The ARRAU corpus is an anaphorically annotated corpus designed to cover a wide variety of aspects of anaphoric reference in a variety of genres, including both written text and spoken language. The objective of this annotation project is to push forward the state of the art in anaphoric annotation, by overcoming the limitations of current annotation practice and the scope of current models of anaphoric interpretation, which in turn may reveal other issues. The resulting corpus is still therefore very much a work in progress almost twenty years after the project started. In this paper, we discuss the issues identified with the coding scheme used for the previous release, ARRAU 2, and through the use of this corpus for three shared tasks; the proposed solutions to these issues; and the resulting corpus, ARRAU 3.
This paper offers a nuanced examination of the role Large Language Models (LLMs) play in coreference resolution, aimed at guiding the future direction in the era of LLMs. We carried out both manual and automatic analyses of different LLMs’ abilities, employing different prompts to examine the performance of different LLMs, obtaining a comprehensive view of their strengths and weaknesses. We found that LLMs show exceptional ability in understanding coreference. However, harnessing this ability to achieve state of the art results on traditional datasets and benchmarks isn’t straightforward. Given these findings, we propose that future efforts should: (1) Improve the scope, data, and evaluation methods of traditional coreference research to adapt to the development of LLMs. (2) Enhance the fine-grained language understanding capabilities of LLMs.
The aim of the Universal Anaphora initiative is to push forward the state of the art in anaphora and anaphora resolution by expanding the aspects of anaphoric interpretation which are or can be reliably annotated in anaphoric corpora, producing unified standards to annotate and encode these annotations, delivering datasets encoded according to these standards, and developing methods for evaluating models that carry out this type of interpretation. Although several papers on aspects of the initiative have appeared, no overall description of the initiative’s goals, proposals and achievements has been published yet except as an online draft. This paper aims to fill this gap, as well as to discuss its progress so far.
Although several datasets annotated for anaphoric reference / coreference exist, even the largest such datasets have limitations in term of size, range of domains, coverage of anaphoric phenomena, and size of documents included. Yet, the approaches proposed to scale up anaphoric annotation haven’t so far resulted in datasets overcoming these limitations. In this paper, we introduce a new release of a corpus for anaphoric reference labelled via a game-with-a-purpose. This new release is comparable in size to the largest existing corpora for anaphoric reference due in part to substantial activity by the players, in part thanks to the use of a new resolve-and-aggregate paradigm to ‘complete’ markable annotations through the combination of an anaphoric resolver and an aggregation method for anaphoric reference. The proposed method could be adopted to greatly speed up annotation time in other projects involving games-with-a-purpose. In addition, the corpus covers genres for which no comparable size datasets exist (Fiction and Wikipedia); it covers singletons and non-referring expressions; and it includes a substantial number of long documents ( 2K in length).
The aim of the Universal Anaphora initiative is to push forward the state of the art both in anaphora (coreference) annotation and in the evaluation of models for anaphora resolution. The first release of the Universal Anaphora Scorer (Yu et al., 2022b) supported the scoring not only of identity anaphora as in the Reference Coreference Scorer (Pradhan et al., 2014) but also of split antecedent anaphoric reference, bridging references, and discourse deixis. That scorer was used in the CODI-CRAC 2021/2022 Shared Tasks on Anaphora Resolution in Dialogues (Khosla et al., 2021; Yu et al., 2022a). A modified version of the scorer supporting discontinuous markables and the COREFUD markup format was also used in the CRAC 2022 Shared Task on Multilingual Coreference Resolution (Zabokrtsky et al., 2022). In this paper, we introduce the second release of the scorer, merging the two previous versions, which can score reference with discontinuous markables and zero anaphora resolution.
The CODI-CRAC 2022 Shared Task on Anaphora Resolution in Dialogues is the second edition of an initiative focused on detecting different types of anaphoric relations in conversations of different kinds. Using five conversational datasets, four of which have been newly annotated with a wide range of anaphoric relations: identity, bridging references and discourse deixis, we defined multiple tasks focusing individually on these key relations. The second edition of the shared task maintained the focus on these relations and used the same datasets as in 2021, but new test data were annotated, the 2021 data were checked, and new subtasks were added. In this paper, we discuss the annotation schemes, the datasets, the evaluation scripts used to assess the system performance on these tasks, and provide a brief summary of the participating systems and the results obtained across 230 runs from three teams, with most submissions achieving significantly better results than our baseline methods.
The aim of the Universal Anaphora initiative is to push forward the state of the art in anaphora and anaphora resolution by expanding the aspects of anaphoric interpretation which are or can be reliably annotated in anaphoric corpora, producing unified standards to annotate and encode these annotations, deliver datasets encoded according to these standards, and developing methods for evaluating models carrying out this type of interpretation. Such expansion of the scope of anaphora resolution requires a comparable expansion of the scope of the scorers used to evaluate this work. In this paper, we introduce an extended version of the Reference Coreference Scorer (Pradhan et al., 2014) that can be used to evaluate the extended range of anaphoric interpretation included in the current Universal Anaphora proposal. The UA scorer supports the evaluation of identity anaphora resolution and of bridging reference resolution, for which scorers already existed but not integrated in a single package. It also supports the evaluation of split antecedent anaphora and discourse deixis, for which no tools existed. The proposed approach to the evaluation of split antecedent anaphora is entirely novel; the proposed approach to the evaluation of discourse deixis leverages the encoding of discourse deixis proposed in Universal Anaphora to enable the use for discourse deixis of the same metrics already used for identity anaphora. The scorer was tested in the recent CODI-CRAC 2021 Shared Task on Anaphora Resolution in Dialogues.
Coreference resolution is a key aspect of text comprehension, but the size of the available coreference corpora for Arabic is limited in comparison to the size of the corpora for other languages. In this paper we present a Game-With-A-Purpose called Stroll with a Scroll created to collect from players coreference annotations for Arabic. The key contribution of this work is the embedding of the annotation task in a virtual world setting, as opposed to the puzzle-type games used in previously proposed Games-With-A-Purpose for coreference.
In this paper, we provide an overview of the CODI-CRAC 2021 Shared-Task: Anaphora Resolution in Dialogue. The shared task focuses on detecting anaphoric relations in different genres of conversations. Using five conversational datasets, four of which have been newly annotated with a wide range of anaphoric relations: identity, bridging references and discourse deixis, we defined multiple subtasks focusing individually on these key relations. We discuss the evaluation scripts used to assess the system performance on these subtasks, and provide a brief summary of the participating systems and the results obtained across ?? runs from 5 teams, with most submissions achieving significantly better results than our baseline methods.
The state-of-the-art on basic, single-antecedent anaphora has greatly improved in recent years. Researchers have therefore started to pay more attention to more complex cases of anaphora such as split-antecedent anaphora, as in “Time-Warner is considering a legal challenge to Telecommunications Inc’s plan to buy half of Showtime Networks Inc–a move that could lead to all-out war between the two powerful companies”. Split-antecedent anaphora is rarer and more complex to resolve than single-antecedent anaphora; as a result, it is not annotated in many datasets designed to test coreference, and previous work on resolving this type of anaphora was carried out in unrealistic conditions that assume gold mentions and/or gold split-antecedent anaphors are available. These systems also focus on split-antecedent anaphors only. In this work, we introduce a system that resolves both single and split-antecedent anaphors, and evaluate it in a more realistic setting that uses predicted mentions. We also start addressing the question of how to evaluate single and split-antecedent anaphors together using standard coreference evaluation metrics.
Named Entity Recognition (NER) is a fundamental task in Natural Language Processing, concerned with identifying spans of text expressing references to entities. NER research is often focused on flat entities only (flat NER), ignoring the fact that entity references can be nested, as in [Bank of [China]] (Finkel and Manning, 2009). In this paper, we use ideas from graph-based dependency parsing to provide our model a global view on the input via a biaffine model (Dozat and Manning, 2017). The biaffine model scores pairs of start and end tokens in a sentence which we use to explore all spans, so that the model is able to predict named entities accurately. We show that the model works well for both nested and flat NER through evaluation on 8 corpora and achieving SoTA performance on all of them, with accuracy gains of up to 2.2 percentage points.
We propose a multi task learning-based neural model for resolving bridging references tackling two key challenges. The first challenge is the lack of large corpora annotated with bridging references. To address this, we use multi-task learning to help bridging reference resolution with coreference resolution. We show that substantial improvements of up to 8 p.p. can be achieved on full bridging resolution with this architecture. The second challenge is the different definitions of bridging used in different corpora, meaning that hand-coded systems or systems using special features designed for one corpus do not work well with other corpora. Our neural model only uses a small number of corpus independent features, thus can be applied to different corpora. Evaluations with very different bridging corpora (ARRAU, ISNOTES, BASHI and SCICORP) suggest that our architecture works equally well on all corpora, and achieves the SoTA results on full bridging resolution for all corpora, outperforming the best reported results by up to 36.3 p.p..
Now that the performance of coreference resolvers on the simpler forms of anaphoric reference has greatly improved, more attention is devoted to more complex aspects of anaphora. One limitation of virtually all coreference resolution models is the focus on single-antecedent anaphors. Plural anaphors with multiple antecedents-so-called split-antecedent anaphors (as in John met Mary. They went to the movies) have not been widely studied, because they are not annotated in ONTONOTES and are relatively infrequent in other corpora. In this paper, we introduce the first model for unrestricted resolution of split-antecedent anaphors. We start with a strong baseline enhanced by BERT embeddings, and show that we can substantially improve its performance by addressing the sparsity issue. To do this, we experiment with auxiliary corpora where split-antecedent anaphors were annotated by the crowd, and with transfer learning models using element-of bridging references and single-antecedent coreference as auxiliary tasks. Evaluation on the gold annotated ARRAU corpus shows that the out best model uses a combination of three auxiliary corpora achieved F1 scores of 70% and 43.6% when evaluated in a lenient and strict setting, respectively, i.e., 11 and 21 percentage points gain when compared with our baseline.
No neural coreference resolver for Arabic exists, in fact we are not aware of any learning-based coreference resolver for Arabic since (Björkelund and Kuhn, 2014). In this paper, we introduce a coreference resolution system for Arabic based on Lee et al’s end-to-end architecture combined with the Arabic version of bert and an external mention detector. As far as we know, this is the first neural coreference resolution system aimed specifically to Arabic, and it substantially outperforms the existing state-of-the-art on OntoNotes 5.0 with a gain of 15.2 points conll F1. We also discuss the current limitations of the task for Arabic and possible approaches that can tackle these challenges.
Mention detection is an important preprocessing step for annotation and interpretation in applications such as NER and coreference resolution, but few stand-alone neural models have been proposed able to handle the full range of mentions. In this work, we propose and compare three neural network-based approaches to mention detection. The first approach is based on the mention detection part of a state of the art coreference resolution system; the second uses ELMO embeddings together with a bidirectional LSTM and a biaffine classifier; the third approach uses the recently introduced BERT model. Our best model (using a biaffine classifier) achieves gains of up to 1.8 percentage points on mention recall when compared with a strong baseline in a HIGH RECALL coreference annotation setting. The same model achieves improvements of up to 5.3 and 6.2 p.p. when compared with the best-reported mention detection F1 on the CONLL and CRAC coreference data sets respectively in a HIGH F1 annotation setting. We then evaluate our models for coreference resolution by using mentions predicted by our best model in start-of-the-art coreference systems. The enhanced model achieved absolute improvements of up to 1.7 and 0.7 p.p. when compared with our strong baseline systems (pipeline system and end-to-end system) respectively. For nested NER, the evaluation of our model on the GENIA corpora shows that our model matches or outperforms state-of-the-art models despite not being specifically designed for this task.
Anaphora resolution (coreference) systems designed for the CONLL 2012 dataset typically cannot handle key aspects of the full anaphora resolution task such as the identification of singletons and of certain types of non-referring expressions (e.g., expletives), as these aspects are not annotated in that corpus. However, the recently released dataset for the CRAC 2018 Shared Task can now be used for that purpose. In this paper, we introduce an architecture to simultaneously identify non-referring expressions (including expletives, predicative s, and other types) and build coreference chains, including singletons. Our cluster-ranking system uses an attention mechanism to determine the relative importance of the mentions in the same cluster. Additional classifiers are used to identify singletons and non-referring markables. Our contributions are as follows. First all, we report the first result on the CRAC data using system mentions; our result is 5.8% better than the shared task baseline system, which used gold mentions. Second, we demonstrate that the availability of singleton clusters and non-referring expressions can lead to substantially improved performance on non-singleton clusters as well. Third, we show that despite our model not being designed specifically for the CONLL data, it achieves a score equivalent to that of the state-of-the-art system by Kantor and Globerson (2019) on that dataset.
We present a corpus of anaphoric information (coreference) crowdsourced through a game-with-a-purpose. The corpus, containing annotations for about 108,000 markables, is one of the largest corpora for coreference for English, and one of the largest crowdsourced NLP corpora, but its main feature is the large number of judgments per markable: 20 on average, and over 2.2M in total. This characteristic makes the corpus a unique resource for the study of disagreements on anaphoric interpretation. A second distinctive feature is its rich annotation scheme, covering singletons, expletives, and split-antecedent plurals. Finally, the corpus also comes with labels inferred using a recently proposed probabilistic model of annotation for coreference. The labels are of high quality and make it possible to successfully train a state of the art coreference resolver, including training on singletons and non-referring expressions. The annotation model can also result in more than one label, or no label, being proposed for a markable, thus serving as a baseline method for automatically identifying ambiguous markables. A preliminary analysis of the results is presented.
One of the key steps in language resource creation is the identification of the text segments to be annotated, or markables, which depending on the task may vary from nominal chunks for named entity resolution to (potentially nested) noun phrases in coreference resolution (or mentions) to larger text segments in text segmentation. Markable identification is typically carried out semi-automatically, by running a markable identifier and correcting its output by hand–which is increasingly done via annotators recruited through crowdsourcing and aggregating their responses. In this paper, we present a method for identifying markables for coreference annotation that combines high-performance automatic markable detectors with checking with a Game-With-A-Purpose (GWAP) and aggregation using a Bayesian annotation model. The method was evaluated both on news data and data from a variety of other genres and results in an improvement on F1 of mention boundaries of over seven percentage points when compared with a state-of-the-art, domain-independent automatic mention detector, and almost three points over an in-domain mention detector. One of the key contributions of our proposal is its applicability to the case in which markables are nested, as is the case with coreference markables; but the GWAP and several of the proposed markable detectors are task and language-independent and are thus applicable to a variety of other annotation scenarios.
The availability of large scale annotated corpora for coreference is essential to the development of the field. However, creating resources at the required scale via expert annotation would be too expensive. Crowdsourcing has been proposed as an alternative; but this approach has not been widely used for coreference. This paper addresses one crucial hurdle on the way to make this possible, by introducing a new model of annotation for aggregating crowdsourced anaphoric annotations. The model is evaluated along three dimensions: the accuracy of the inferred mention pairs, the quality of the post-hoc constructed silver chains, and the viability of using the silver chains as an alternative to the expert-annotated chains in training a state of the art coreference system. The results suggest that our model can extract from crowdsourced annotations coreference chains of comparable quality to those obtained with expert annotation.
The ARRAU corpus is an anaphorically annotated corpus of English providing rich linguistic information about anaphora resolution. The most distinctive feature of the corpus is the annotation of a wide range of anaphoric relations, including bridging references and discourse deixis in addition to identity (coreference). Other distinctive features include treating all NPs as markables, including non-referring NPs; and the annotation of a variety of morphosyntactic and semantic mention and entity attributes, including the genericity status of the entities referred to by markables. The corpus however has not been extensively used for anaphora resolution research so far. In this paper, we discuss three datasets extracted from the ARRAU corpus to support the three subtasks of the CRAC 2018 Shared Task–identity anaphora resolution over ARRAU-style markables, bridging references resolution, and discourse deixis; the evaluation scripts assessing system performance on those datasets; and preliminary results on these three tasks that may serve as baseline for subsequent research in these phenomena.
In this paper, we present an approach to improve the accuracy of a strong transition-based dependency parser by exploiting dependency language models that are extracted from a large parsed corpus. We integrated a small number of features based on the dependency language models into the parser. To demonstrate the effectiveness of the proposed approach, we evaluate our parser on standard English and Chinese data where the base parser could achieve competitive accuracy scores. Our enhanced parser achieved state-of-the-art accuracy on Chinese data and competitive results on English data. We gained a large absolute improvement of one point (UAS) on Chinese and 0.5 points for English.