This study investigates the behaviors of Large Language Models (LLMs) when faced with conflicting prompts versus their internal memory. This will not only help to understand LLMs’ decision mechanism but also benefit real-world applications, such as retrieval-augmented generation (RAG).Drawing on cognitive theory, we target the first scenario of decision-making styles where there is no superiority in the conflict and categorize LLMs’ preference into dependent, intuitive, and rational/irrational styles.Another scenario of factual robustness considers the correctness of prompt and memory in knowledge-intensive tasks, which can also distinguish if LLMs behave rationally or irrationally in the first scenario.To quantify them, we establish a complete benchmarking framework including a dataset, a robustness evaluation pipeline, and corresponding metrics. Extensive experiments with seven LLMs reveal their varying behaviors. And, with role play intervention, we can change the styles, but different models present distinct adaptivity and upper-bound. One of our key takeaways is to optimize models or the prompts according to the identified style. For instance, RAG models with high role play adaptability may dynamically adjust the interventions according to the quality of retrieval results — being dependent to better leverage informative context; and, being intuitive when external prompt is noisy.
Through pretraining on a corpus with various sources, Large Language Models (LLMs) have gained impressive performance. However, the impact of each component of the pretraining corpus remains opaque. As a result, the organization of the pretraining corpus is still empirical and may deviate from the optimal. To address this issue, we systematically analyze the impact of 48 datasets from 5 major categories of pretraining data of LLMs and measure their impacts on LLMs using benchmarks about nine major categories of model capabilities. Our analyses provide empirical results about the contribution of multiple corpora on the performances of LLMs, along with their joint impact patterns, including complementary, orthogonal, and correlational relationships. We also identify a set of “high-impact data” such as Books that is significantly related to a set of model capabilities. These findings provide insights into the organization of data to support more efficient pretraining of LLMs.
Large Language Models (LLMs) have shown impressive capabilities in various applications, but they still face various inconsistency issues. Existing works primarily focus on the inconsistency issues within a single LLM, while we complementarily explore the inter-consistency among multiple LLMs for collaboration. To examine whether LLMs can collaborate effectively to achieve a consensus for a shared goal, we focus on commonsense reasoning, and introduce a formal debate framework (FORD) to conduct a three-stage debate among LLMs with real-world scenarios alignment: fair debate, mismatched debate, and roundtable debate. Through extensive experiments on various datasets, LLMs can effectively collaborate to reach a consensus despite noticeable inter-inconsistencies, but imbalances in their abilities can lead to domination by superior LLMs. Leveraging a more advanced LLM like GPT-4 as an authoritative judge can boost collaboration performance. Our work contributes to understanding the inter-consistency among LLMs and lays the foundation for developing future collaboration methods. Codes and data are available at https://github.com/Waste-Wood/FORD.
Understanding causality has vital importance for various Natural Language Processing (NLP) applications. Beyond the labeled instances, conceptual explanations of the causality can provide deep understanding of the causal fact to facilitate the causal reasoning process. However, such explanation information still remains absent in existing causal reasoning resources. In this paper, we fill this gap by presenting a human-annotated explainable CAusal REasoning dataset (e-CARE), which contains over 20K causal reasoning questions, together with natural language formed explanations of the causal questions. Experimental results show that generating valid explanations for causal facts still remains especially challenging for the state-of-the-art models, and the explanation information can be helpful for promoting the accuracy and stability of causal reasoning models.
Causal chain reasoning (CCR) is an essential ability for many decision-making AI systems, which requires the model to build reliable causal chains by connecting causal pairs. However, CCR suffers from two main transitive problems: threshold effect and scene drift. In other words, the causal pairs to be spliced may have a conflicting threshold boundary or scenario.To address these issues, we propose a novel Reliable Causal chain reasoning framework (ReCo), which introduces exogenous variables to represent the threshold and scene factors of each causal pair within the causal chain, and estimates the threshold and scene contradictions across exogenous variables via structural causal recurrent neural networks (SRNN). Experiments show that ReCo outperforms a series of strong baselines on both Chinese and English CCR datasets. Moreover, by injecting reliable causal chain knowledge distilled by ReCo, BERT can achieve better performances on four downstream causal-related tasks than BERT models enhanced by other kinds of knowledge.
Prior work infers the causation between events mainly based on the knowledge induced from the annotated causal event pairs. However, additional evidence information intermediate to the cause and effect remains unexploited. By incorporating such information, the logical law behind the causality can be unveiled, and the interpretability and stability of the causal reasoning system can be improved. To facilitate this, we present an Event graph knowledge enhanced explainable CAusal Reasoning framework (ExCAR). ExCAR first acquires additional evidence information from a large-scale causal event graph as logical rules for causal reasoning. To learn the conditional probabilistic of logical rules, we propose the Conditional Markov Neural Logic Network (CMNLN) that combines the representation learning and structure learning of logical rules in an end-to-end differentiable manner. Experimental results demonstrate that ExCAR outperforms previous state-of-the-art methods. Adversarial evaluation shows the improved stability of ExCAR over baseline systems. Human evaluation shows that ExCAR can achieve a promising explainable performance.