Kashun Shum

Also published as: KaShun Shum


2024

pdf bib
FIRST: Teach A Reliable Large Language Model Through Efficient Trustworthy Distillation
KaShun Shum | Minrui Xu | Jianshu Zhang | Zixin Chen | Shizhe Diao | Hanze Dong | Jipeng Zhang | Muhammad Omer Raza
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have become increasingly prevalent in our daily lives, leading to an expectation for LLMs to be trustworthy —- both accurate and well-calibrated (the prediction confidence should align with its ground truth correctness likelihood). Nowadays, fine-tuning has become the most popular method for adapting a model to practical usage by significantly increasing accuracy on downstream tasks. Despite the great accuracy it achieves, we found fine-tuning is still far away from satisfactory trustworthiness due to “tuning-induced mis-calibration”. In this paper, we delve deeply into why and how mis-calibration exists in fine-tuned models, and how distillation can alleviate the issue. Then we further propose a brand new method named Efficient Trustworthy Distillation (FIRST), which utilizes a small portion of teacher’s knowledge to obtain a reliable language model in a cost-efficient way. Specifically, we identify the “concentrated knowledge” phenomenon during distillation, which can significantly reduce the computational burden. Then we apply a “trustworthy maximization” process to optimize the utilization of this small portion of concentrated knowledge before transferring it to the student. Experimental results demonstrate the effectiveness of our method, where better accuracy (+2.3%) and less mis-calibration (-10%) are achieved on average across both in-domain and out-of-domain scenarios, indicating better trustworthiness.

pdf bib
Plum: Prompt Learning using Metaheuristics
Rui Pan | Shuo Xing | Shizhe Diao | Wenhe Sun | Xiang Liu | KaShun Shum | Jipeng Zhang | Renjie Pi | Tong Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly “general”, i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in white-box and black-box prompt learning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown in both reasoning and image generation tasks, opening the door to a cornucopia of possibilities in prompt optimization.

pdf bib
LMFlow: An Extensible Toolkit for Finetuning and Inference of Large Foundation Models
Shizhe Diao | Rui Pan | Hanze Dong | KaShun Shum | Jipeng Zhang | Wei Xiong | Tong Zhang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)

Foundation models have demonstrated a great ability to achieve general human-level intelligence far beyond traditional approaches. As the technique keeps attracting attention from the AI community, more and more foundation models have become publicly available.However, most of those models exhibit a major deficiency in specialized-domain and specialized-task applications, where the step of domain- and task-aware finetuning is still required to obtain scientific language models. As the number of available foundation models and specialized tasks keeps growing, the job of training scientific language models becomes highly nontrivial. In this paper, we take the first step to address this issue. We introduce an extensible and lightweight toolkit, LMFlow, which aims to simplify the domain- and task-aware finetuning of general foundation models.LMFlow offers a complete finetuning workflow for a foundation model to support specialized training with limited computing resources.Furthermore, it supports continuous pretraining, instruction tuning, parameter-efficient finetuning, alignment tuning, inference acceleration, long context generalization, model customization, and even multimodal finetuning, along with carefully designed and extensible APIs. This toolkit has been thoroughly tested and is available at https://github.com/OptimalScale/LMFlow.

pdf bib
RAGTruth: A Hallucination Corpus for Developing Trustworthy Retrieval-Augmented Language Models
Cheng Niu | Yuanhao Wu | Juno Zhu | Siliang Xu | KaShun Shum | Randy Zhong | Juntong Song | Tong Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-augmented generation (RAG) has become a main technique for alleviating hallucinations in large language models (LLMs). Despite the integration of RAG, LLMs may still present unsupported or contradictory claims to the retrieved contents. In order to develop effective hallucination prevention strategies under RAG, it is important to create benchmark datasets that can measure the extent of hallucination. This paper presents RAGTruth, a corpus tailored for analyzing word-level hallucinations in various domains and tasks within the standard RAG frameworks for LLM applications. RAGTruth comprises nearly 18,000 naturally generated responses from diverse LLMs using RAG. These responses have undergone meticulous manual annotations at both the individual case and word levels, incorporating evaluations of hallucination intensity. We not only benchmark hallucination frequencies across different LLMs, but also critically assess the effectiveness of several existing hallucination detection methodologies. We show that using a high-quality dataset such as RAGTruth, it is possible to finetune a relatively small LLM and achieve a competitive hallucination detection performance when compared to the existing prompt-based approaches using state-of-the-art LLMs such as GPT-4. Furthermore, the finetuned model can effectively mitigate hallucination in LLM responses.

2023

pdf bib
Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data
Kashun Shum | Shizhe Diao | Tong Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023

Chain-of-thought (CoT) advances the reasoning abilities of large language models (LLMs) and achieves superior performance in complex reasoning tasks. However, most CoT studies rely on carefully designed human-annotated rational chains to prompt LLMs, posing challenges for real-world applications where labeled data is available without rational chains. This paper proposes a new strategy, AutomateCoT (Automatic Prompt Augmentation and Selection with Chain-of-Thought), that can bypass human engineering of CoT by automatically augmenting rational chains from a small labeled dataset, and then pruning low-quality chains to construct a candidate pool of machinegenerated rationale chains based on the labels. Finally, it selects the optimal combination of several rationale chains from the pool for CoT prompting by employing a variance-reduced policy gradient strategy to estimate the significance of each example. Automate-CoT enables a quick adaptation of the CoT technique to different tasks. Experimental results demonstrate the effectiveness of our method, where competitive results are achieved on arithmetic reasoning (+2.7%), commonsense reasoning (+3.4%), symbolic reasoning (+3.2%), and non-reasoning tasks (+2.5%).

2021

pdf bib
TILGAN: Transformer-based Implicit Latent GAN for Diverse and Coherent Text Generation
Shizhe Diao | Xinwei Shen | Kashun Shum | Yan Song | Tong Zhang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021