Naomi Saphra


2024

pdf bib
ChatGPT Doesn’t Trust Chargers Fans: Guardrail Sensitivity in Context
Victoria R Li | Yida Chen | Naomi Saphra
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

While the biases of language models in production are extensively documented, the biases of their guardrails have been neglected. This paper studies how contextual information about the user influences the likelihood of an LLM to refuse to execute a request. By generating user biographies that offer ideological and demographic information, we find a number of biases in guardrail sensitivity on GPT-3.5. Younger, female, and Asian-American personas are more likely to trigger a refusal guardrail when requesting censored or illegal information. Guardrails are also sycophantic, refusing to comply with requests for a political position the user is likely to disagree with. We find that certain identity groups and seemingly innocuous information, e.g., sports fandom, can elicit changes in guardrail sensitivity similar to direct statements of political ideology. For each demographic category and even for American football team fandom, we find that ChatGPT appears to infer a likely political ideology and modify guardrail behavior accordingly.

pdf bib
Fast Forwarding Low-Rank Training
Adir Rahamim | Naomi Saphra | Sara Kangaslahti | Yonatan Belinkov
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Parameter efficient finetuning methods like low-rank adaptation (LoRA) aim to reduce the computational costs of finetuning pretrained Language Models (LMs). Enabled by these low-rank settings, we propose an even more efficient optimization strategy: Fast Forward, a simple and effective approach to accelerate large segments of SGD training. In a Fast Forward stage, we repeat the most recent optimizer step until the loss stops improving on a tiny validation set. By alternating between regular optimization steps and Fast Forward stages, Fast Forward provides up to an 87% reduction in FLOPs over standard SGD with Adam. We validate Fast Forward by finetuning various models on different tasks and demonstrate that it speeds up training without compromising model performance. Additionally, we analyze when and how to apply Fast Forward.

pdf bib
Attribute Diversity Determines the Systematicity Gap in VQA
Ian Berlot-Attwell | Kumar Krishna Agrawal | Annabelle Michael Carrell | Yash Sharma | Naomi Saphra
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Although modern neural networks often generalize to new combinations of familiar concepts, the conditions that enable such compositionality have long been an open question. In this work, we study the systematicity gap in visual question answering: the performance difference between reasoning on previously seen and unseen combinations of object attributes. To test, we introduce a novel diagnostic dataset, CLEVR-HOPE. We find that the systematicity gap is not reduced by increasing the quantity of training data, but is reduced by increasing the diversity of training data. In particular, our experiments suggest that the more distinct attribute type combinations are seen during training, the more systematic we can expect the resulting model to be.

pdf bib
First Tragedy, then Parse: History Repeats Itself in the New Era of Large Language Models
Naomi Saphra | Eve Fleisig | Kyunghyun Cho | Adam Lopez
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Many NLP researchers are experiencing an existential crisis triggered by the astonishing success of ChatGPT and other systems based on large language models (LLMs). After such a disruptive change to our understanding of the field, what is left to do? Taking a historical lens, we look for guidance from the first era of LLMs, which began in 2005 with large n-gram models for machine translation (MT). We identify durable lessons from the first era, and more importantly, we identify evergreen problems where NLP researchers can continue to make meaningful contributions in areas where LLMs are ascendant. We argue that disparities in scale are transient and researchers can work to reduce them; that data, rather than hardware, is still a bottleneck for many applications; that meaningful realistic evaluation is still an open problem; and that there is still room for speculative approaches.

pdf bib
Mechanistic?
Naomi Saphra | Sarah Wiegreffe
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

The rise of the term “mechanistic interpretability” has accompanied increasing interest in understanding neural models—particularly language models. However, this jargon has also led to a fair amount of confusion. So, what does it mean to be mechanistic? We describe four uses of the term in interpretability research. The most narrow technical definition requires a claim of causality, while a broader technical definition allows for any exploration of a model’s internals. However, the term also has a narrow cultural definition describing a cultural movement. To understand this semantic drift, we present a history of the NLP interpretability community and the formation of the separate, parallel mechanistic interpretability community. Finally, we discuss the broad cultural definition—encompassing the entire field of interpretability—and why the traditional NLP interpretability community has come to embrace it. We argue that the polysemy of “mechanistic” is the product of a critical divide within the interpretability community.

pdf bib
Dynamic Masking Rate Schedules for MLM Pretraining
Zachary Ankner | Naomi Saphra | Davis Blalock | Jonathan Frankle | Matthew Leavitt
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

Most works on transformers trained with the Masked Language Modeling (MLM) objective use the original BERT model’s fixed masking rate of 15%. We propose to instead dynamically schedule the masking rate throughout training. We find that linearly decreasing the masking rate over the course of pretraining improves average GLUE accuracy by up to 0.46% and 0.25% in BERT-base and BERT-large, respectively, compared to fixed rate baselines. These gains come from exposure to both high and low masking rate regimes, providing benefits from both settings. Our results demonstrate that masking rate scheduling is a simple way to improve the quality of masked language models, achieving up to a 1.89x speedup in pretraining for BERT-base as well as a Pareto improvement for BERT-large.

2023

pdf bib
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)
Burcu Can | Maximilian Mozes | Samuel Cahyawijaya | Naomi Saphra | Nora Kassner | Shauli Ravfogel | Abhilasha Ravichander | Chen Zhao | Isabelle Augenstein | Anna Rogers | Kyunghyun Cho | Edward Grefenstette | Lena Voita
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)

2022

pdf bib
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
Jasmijn Bastings | Yonatan Belinkov | Yanai Elazar | Dieuwke Hupkes | Naomi Saphra | Sarah Wiegreffe
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

pdf bib
Benchmarking Compositionality with Formal Languages
Josef Valvoda | Naomi Saphra | Jonathan Rawski | Adina Williams | Ryan Cotterell
Proceedings of the 29th International Conference on Computational Linguistics

Recombining known primitive concepts into larger novel combinations is a quintessentially human cognitive capability. Whether large neural models in NLP acquire this ability while learning from data is an open question. In this paper, we look at this problem from the perspective of formal languages. We use deterministic finite-state transducers to make an unbounded number of datasets with controllable properties governing compositionality. By randomly sampling over many transducers, we explore which of their properties (number of states, alphabet size, number of transitions etc.) contribute to learnability of a compositional relation by a neural network. In general, we find that the models either learn the relations completely or not at all. The key is transition coverage, setting a soft learnability limit at 400 examples per transition.

2021

pdf bib
A Non-Linear Structural Probe
Jennifer C. White | Tiago Pimentel | Naomi Saphra | Ryan Cotterell
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Probes are models devised to investigate the encoding of knowledge—e.g. syntactic structure—in contextual representations. Probes are often designed for simplicity, which has led to restrictions on probe design that may not allow for the full exploitation of the structure of encoded information; one such restriction is linearity. We examine the case of a structural probe (Hewitt and Manning, 2019), which aims to investigate the encoding of syntactic structure in contextual representations through learning only linear transformations. By observing that the structural probe learns a metric, we are able to kernelize it and develop a novel non-linear variant with an identical number of parameters. We test on 6 languages and find that the radial-basis function (RBF) kernel, in conjunction with regularization, achieves a statistically significant improvement over the baseline in all languages—implying that at least part of the syntactic knowledge is encoded non-linearly. We conclude by discussing how the RBF kernel resembles BERT’s self-attention layers and speculate that this resemblance leads to the RBF-based probe’s stronger performance.

pdf bib
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)
Anna Rogers | Iacer Calixto | Ivan Vulić | Naomi Saphra | Nora Kassner | Oana-Maria Camburu | Trapit Bansal | Vered Shwartz
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

2020

pdf bib
LSTMs Compose—and Learn—Bottom-Up
Naomi Saphra | Adam Lopez
Findings of the Association for Computational Linguistics: EMNLP 2020

Recent work in NLP shows that LSTM language models capture compositional structure in language data. In contrast to existing work, we consider the learning process that leads to compositional behavior. For a closer look at how an LSTM’s sequential representations are composed hierarchically, we present a related measure of Decompositional Interdependence (DI) between word meanings in an LSTM, based on their gate interactions. We support this measure with experiments on English language data, where DI is higher on pairs of words with lower syntactic distance. To explore the inductive biases that cause these compositional representations to arise during training, we conduct simple experiments on synthetic data. These synthetic experiments support a specific hypothesis about how hierarchical structures are discovered over the course of training: that LSTM constituent representations are learned bottom-up, relying on effective representations of their shorter children, rather than on learning the longer-range relations independently.

pdf bib
Pareto Probing: Trading Off Accuracy for Complexity
Tiago Pimentel | Naomi Saphra | Adina Williams | Ryan Cotterell
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The question of how to probe contextual word representations in a way that is principled and useful has seen significant recent attention. In our contribution to this discussion, we argue, first, for a probe metric that reflects the trade-off between probe complexity and performance: the Pareto hypervolume. To measure complexity, we present a number of parametric and non-parametric metrics. Our experiments with such metrics show that probe’s performance curves often fail to align with widely accepted rankings between language representations (with, e.g., non-contextual representations outperforming contextual ones). These results lead us to argue, second, that common simplistic probe tasks such as POS labeling and dependency arc labeling, are inadequate to evaluate the properties encoded in contextual word representations. We propose full dependency parsing as an example probe task, and demonstrate it with the Pareto hypervolume. In support of our arguments, the results of this illustrative experiment conform closer to accepted rankings among contextual word representations.

2019

pdf bib
Understanding Learning Dynamics Of Language Models with SVCCA
Naomi Saphra | Adam Lopez
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Research has shown that neural models implicitly encode linguistic features, but there has been no research showing how these encodings arise as the models are trained. We present the first study on the learning dynamics of neural language models, using a simple and flexible analysis method called Singular Vector Canonical Correlation Analysis (SVCCA), which enables us to compare learned representations across time and across models, without the need to evaluate directly on annotated data. We probe the evolution of syntactic, semantic, and topic representations, finding, for example, that part-of-speech is learned earlier than topic; that recurrent layers become more similar to those of a tagger during training; and embedding layers less similar. Our results and methods could inform better learning algorithms for NLP models, possibly to incorporate linguistic information more effectively.

2018

pdf bib
Language Models Learn POS First
Naomi Saphra | Adam Lopez
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

A glut of recent research shows that language models capture linguistic structure. Such work answers the question of whether a model represents linguistic structure. But how and when are these structures acquired? Rather than treating the training process itself as a black box, we investigate how representations of linguistic structure are learned over time. In particular, we demonstrate that different aspects of linguistic structure are learned at different rates, with part of speech tagging acquired early and global topic information learned continuously.

2016

pdf bib
Evaluating Informal-Domain Word Representations With UrbanDictionary
Naomi Saphra | Adam Lopez
Proceedings of the 1st Workshop on Evaluating Vector-Space Representations for NLP

2015

pdf bib
AMRICA: an AMR Inspector for Cross-language Alignments
Naomi Saphra | Adam Lopez
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

2013

pdf bib
A Framework for (Under)specifying Dependency Syntax without Overloading Annotators
Nathan Schneider | Brendan O’Connor | Naomi Saphra | David Bamman | Manaal Faruqui | Noah A. Smith | Chris Dyer | Jason Baldridge
Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse