Prasenjit Mitra


2024

pdf bib
Pruning as a Domain-specific LLM Extractor
Nan Zhang | Yanchi Liu | Xujiang Zhao | Wei Cheng | Runxue Bao | Rui Zhang | Prasenjit Mitra | Haifeng Chen
Findings of the Association for Computational Linguistics: NAACL 2024

Large Language Models (LLMs) have exhibited remarkable proficiency across a wide array of NLP tasks. However, the escalation in model size also engenders substantial deployment costs. While few efforts have explored model pruning techniques to reduce the size of LLMs, they mainly center on general or task-specific weights. This leads to suboptimal performance due to lacking specificity on the target domain or generality on different tasks when applied to domain-specific challenges. This work introduces an innovative unstructured dual-pruning methodology, D-Pruner, for domain-specific compression on LLM. It extracts a compressed, domain-specific, and task- agnostic LLM by identifying LLM weights that are pivotal for general capabilities, like linguistic capability and multi-task solving, and domain-specific knowledge. More specifically, we first assess general weight importance by quantifying the error incurred upon their removal with the help of an open-domain calibration dataset. Then, we utilize this general weight importance to refine the training loss, so that it preserves generality when fitting into a specific domain. Moreover, by efficiently approximating weight importance with the refined training loss on a domain-specific calibration dataset, we obtain a pruned model emphasizing generality and specificity. Our comprehensive experiments across various tasks in healthcare and legal domains show the effectiveness of D-Pruner in domain-specific compression. Our code is available at https://github.com/psunlpgroup/D-Pruner.

pdf bib
PromptFix: Few-shot Backdoor Removal via Adversarial Prompt Tuning
Tianrong Zhang | Zhaohan Xi | Ting Wang | Prasenjit Mitra | Jinghui Chen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Pre-trained language models (PLMs) have attracted enormous attention over the past few years with their unparalleled performances. Meanwhile, the soaring cost to train PLMs as well as their amazing generalizability have jointly contributed to few-shot fine-tuning and prompting as the most popular training paradigms for natural language processing (NLP) models. Nevertheless, existing studies have shown that these NLP models can be backdoored such that model behavior is manipulated when trigger tokens are presented.In this paper, we propose PromptFix, a novel backdoor mitigation strategy for NLP models via adversarial prompt-tuning in few-shot settings.Unlike existing NLP backdoor removal methods, which rely on accurate trigger inversion and subsequent model fine-tuning, PromptFix keeps the model parameters intact and only utilizes two extra sets of soft tokens which approximate the trigger and counteract it respectively. The use of soft tokens and adversarial optimization eliminates the need to enumerate possible backdoor configurations and enables an adaptive balance between trigger finding and preservation of performance.Experiments with various backdoor attacks validate the effectiveness of the proposed method and the performances when domain shift is present further shows PromptFix’s applicability to models pretrained on unknown data source which is the common case in prompt tuning scenarios.

pdf bib
Deriving Entity-Specific Embeddings from Multi-Entity Sequences
Connor Heaton | Prasenjit Mitra
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Underpinning much of the recent progress in deep learning is the transformer architecture, which takes as input a sequence of embeddings E and emits an updated sequence of embeddings E’. A special [CLS] embedding is often included in this sequence, serving as a description of the sequence once processed and used as the basis for subsequent sequence-level tasks. The processed [CLS] embedding loses utility, however, when the model is presented with a multi-entity sequence and asked to perform an entity-specific task. When processing a multi-speaker dialogue, for example, the [CLS] embedding describes the entire dialogue, not any individual utterance/speaker. Existing methods toward entity-specific prediction involve redundant computation or post-processing outside of the transformer. We present a novel methodology for deriving entity-specific embeddings from a multi-entity sequence completely within the transformer, with a loose definition of entity amenable to many problem spaces. To show the generic applicability of our method, we apply it to widely different tasks: emotion recognition in conversation and player performance projection in baseball and show that it can be used to achieve SOTA in both. Code can be found at https://github.com/c-heat16/EntitySpecificEmbeddings.

pdf bib
PEaCE: A Chemistry-Oriented Dataset for Optical Character Recognition on Scientific Documents
Nan Zhang | Connor Heaton | Sean Timothy Okonsky | Prasenjit Mitra | Hilal Ezgi Toraman
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Optical Character Recognition (OCR) is an established task with the objective of identifying the text present in an image. While many off-the-shelf OCR models exist, they are often trained for either scientific (e.g., formulae) or generic printed English text. Extracting text from chemistry publications requires an OCR model that is capable in both realms. Nougat, a recent tool, exhibits strong ability to parse academic documents, but is unable to parse tables in PubMed articles, which comprises a significant part of the academic community and is the focus of this work. To mitigate this gap, we present the Printed English and Chemical Equations (PEaCE) dataset, containing both synthetic and real-world records, and evaluate the efficacy of transformer-based OCR models when trained on this resource. Given that real-world records contain artifacts not present in synthetic records, we propose transformations that mimic such qualities. We perform a suite of experiments to explore the impact of patch size, multi-domain training, and our proposed transformations, ultimately finding that models with a small patch size trained on multiple domains using the proposed transformations yield the best performance. Our dataset and code is available at https://github.com/ZN1010/PEaCE.

2023

pdf bib
FaMeSumm: Investigating and Improving Faithfulness of Medical Summarization
Nan Zhang | Yusen Zhang | Wu Guo | Prasenjit Mitra | Rui Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Summaries of medical text shall be faithful by being consistent and factual with source inputs, which is an important but understudied topic for safety and efficiency in healthcare. In this paper, we investigate and improve faithfulness in summarization on a broad range of medical summarization tasks. Our investigation reveals that current summarization models often produce unfaithful outputs for medical input text. We then introduce FaMeSumm, a framework to improve faithfulness by fine-tuning pre-trained language models based on medical knowledge. FaMeSumm performs contrastive learning on designed sets of faithful and unfaithful summaries, and it incorporates medical terms and their contexts to encourage faithful generation of medical terms. We conduct comprehensive experiments on three datasets in two languages: health question and radiology report summarization datasets in English, and a patient-doctor dialogue dataset in Chinese. Results demonstrate that FaMeSumm is flexible and effective by delivering consistent improvements over mainstream language models such as BART, T5, mT5, and PEGASUS, yielding state-of-the-art performances on metrics for faithfulness and general quality. Human evaluation by doctors also shows that FaMeSumm generates more faithful outputs. Our code is available at https://github.com/psunlpgroup/FaMeSumm.

2022

pdf bib
STAPI: An Automatic Scraper for Extracting Iterative Title-Text Structure from Web Documents
Nan Zhang | Shomir Wilson | Prasenjit Mitra
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Formal documents often are organized into sections of text, each with a title, and extracting this structure remains an under-explored aspect of natural language processing. This iterative title-text structure is valuable data for building models for headline generation and section title generation, but there is no corpus that contains web documents annotated with titles and prose texts. Therefore, we propose the first title-text dataset on web documents that incorporates a wide variety of domains to facilitate downstream training. We also introduce STAPI (Section Title And Prose text Identifier), a two-step system for labeling section titles and prose text in HTML documents. To filter out unrelated content like document footers, its first step involves a filter that reads HTML documents and proposes a set of textual candidates. In the second step, a typographic classifier takes the candidates from the filter and categorizes each one into one of the three pre-defined classes (title, prose text, and miscellany). We show that STAPI significantly outperforms two baseline models in terms of title-text identification. We release our dataset along with a web application to facilitate supervised and semi-supervised training in this domain.

2021

pdf bib
Are BERTs Sensitive to Native Interference in L2 Production?
Zixin Tang | Prasenjit Mitra | David Reitter
Proceedings of the Second Workshop on Insights from Negative Results in NLP

With the essays part from The International Corpus Network of Asian Learners of English (ICNALE) and the TOEFL11 corpus, we fine-tuned neural language models based on BERT to predict English learners’ native languages. Results showed neural models can learn to represent and detect such native language impacts, but multilingually trained models have no advantage in doing so.

pdf bib
Extractive Research Slide Generation Using Windowed Labeling Ranking
Athar Sefid | Prasenjit Mitra | Jian Wu | C Lee Giles
Proceedings of the Second Workshop on Scholarly Document Processing

Presentation slides generated from original research papers provide an efficient form to present research innovations. Manually generating presentation slides is labor-intensive. We propose a method to automatically generates slides for scientific articles based on a corpus of 5000 paper-slide pairs compiled from conference proceedings websites. The sentence labeling module of our method is based on SummaRuNNer, a neural sequence model for extractive summarization. Instead of ranking sentences based on semantic similarities in the whole document, our algorithm measures the importance and novelty of sentences by combining semantic and lexical features within a sentence window. Our method outperforms several baseline methods including SummaRuNNer by a significant margin in terms of ROUGE score.

2020

pdf bib
Recognition of Implicit Geographic Movement in Text
Scott Pezanowski | Prasenjit Mitra
Proceedings of the Twelfth Language Resources and Evaluation Conference

Analyzing the geographic movement of humans, animals, and other phenomena is a growing field of research. This research has benefited urban planning, logistics, animal migration understanding, and much more. Typically, the movement is captured as precise geographic coordinates and time stamps with Global Positioning Systems (GPS). Although some research uses computational techniques to take advantage of implicit movement in descriptions of route directions, hiking paths, and historical exploration routes, innovation would accelerate with a large and diverse corpus. We created a corpus of sentences labeled as describing geographic movement or not and including the type of entity moving. Creating this corpus proved difficult without any comparable corpora to start with, high human labeling costs, and since movement can at times be interpreted differently. To overcome these challenges, we developed an iterative process employing hand labeling, crowd voting for confirmation, and machine learning to predict more labels. By merging advances in word embeddings with traditional machine learning models and model ensembling, prediction accuracy is at an acceptable level to produce a large silver-standard corpus despite the small gold-standard corpus training set. Our corpus will likely benefit computational processing of geography in text and spatial cognition, in addition to detection of movement.

2016

pdf bib
Twitter as a Lifeline: Human-annotated Twitter Corpora for NLP of Crisis-related Messages
Muhammad Imran | Prasenjit Mitra | Carlos Castillo
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

Microblogging platforms such as Twitter provide active communication channels during mass convergence and emergency events such as earthquakes, typhoons. During the sudden onset of a crisis situation, affected people post useful information on Twitter that can be used for situational awareness and other humanitarian disaster response efforts, if processed timely and effectively. Processing social media information pose multiple challenges such as parsing noisy, brief and informal messages, learning information categories from the incoming stream of messages and classifying them into different classes among others. One of the basic necessities of many of these tasks is the availability of data, in particular human-annotated data. In this paper, we present human-annotated Twitter corpora collected during 19 different crises that took place between 2013 and 2015. To demonstrate the utility of the annotations, we train machine learning classifiers. Moreover, we publish first largest word2vec word embeddings trained on 52 million crisis-related tweets. To deal with tweets language issues, we present human-annotated normalized lexical resources for different lexical variations.

2015

pdf bib
WikiKreator: Improving Wikipedia Stubs Automatically
Siddhartha Banerjee | Prasenjit Mitra
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2014

pdf bib
Summarizing Online Forum Discussions – Can Dialog Acts of Individual Messages Help?
Sumit Bhatia | Prakhar Biyani | Prasenjit Mitra
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

pdf bib
Identifying Emotional and Informational Support in Online Health Communities
Prakhar Biyani | Cornelia Caragea | Prasenjit Mitra | John Yen
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

2012

pdf bib
Thread Specific Features are Helpful for Identifying Subjectivity Orientation of Online Forum Threads
Prakhar Biyani | Sumit Bhatia | Cornelia Caragea | Prasenjit Mitra
Proceedings of COLING 2012