Quanquan Gu
2024
Large Language Models Can Be Contextual Privacy Protection Learners
Yijia Xiao
|
Yiqiao Jin
|
Yushi Bai
|
Yue Wu
|
Xianjun Yang
|
Xiao Luo
|
Wenchao Yu
|
Xujiang Zhao
|
Yanchi Liu
|
Quanquan Gu
|
Haifeng Chen
|
Wei Wang
|
Wei Cheng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The proliferation of Large Language Models (LLMs) has driven considerable interest in fine-tuning them with domain-specific data to create specialized language models. Nevertheless, such domain-specific fine-tuning data often contains contextually sensitive personally identifiable information (PII). Direct fine-tuning LLMs on this data without privacy protection poses a risk of data leakage of sensitive PII during inference time. To address this challenge, we introduce Contextual Privacy Protection Language Models (CPPLM), a novel paradigm for fine-tuning LLMs that effectively injects domain-specific knowledge while safeguarding inference-time data privacy. Our work offers a theoretical analysis for model design and delves into various techniques such as corpus curation, penalty-based unlikelihood in training loss, and instruction-based tuning, etc. Extensive experiments across diverse datasets and scenarios demonstrate the effectiveness of our approaches. In particular, instruction tuning with both positive and negative examples, stands out as a promising method, effectively protecting private data while enhancing the model’s knowledge. Our work underscores the potential for Large Language Models as robust contextual privacy protection learners.
2021
Variance-reduced First-order Meta-learning for Natural Language Processing Tasks
Lingxiao Wang
|
Kevin Huang
|
Tengyu Ma
|
Quanquan Gu
|
Jing Huang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
First-order meta-learning algorithms have been widely used in practice to learn initial model parameters that can be quickly adapted to new tasks due to their efficiency and effectiveness. However, existing studies find that meta-learner can overfit to some specific adaptation when we have heterogeneous tasks, leading to significantly degraded performance. In Natural Language Processing (NLP) applications, datasets are often diverse and each task has its unique characteristics. Therefore, to address the overfitting issue when applying first-order meta-learning to NLP applications, we propose to reduce the variance of the gradient estimator used in task adaptation. To this end, we develop a variance-reduced first-order meta-learning algorithm. The core of our algorithm is to introduce a novel variance reduction term to the gradient estimation when performing the task adaptation. Experiments on two NLP applications: few-shot text classification and multi-domain dialog state tracking demonstrate the superior performance of our proposed method.