Ryuichi Takanobu


2021

pdf bib
Robustness Testing of Language Understanding in Task-Oriented Dialog
Jiexi Liu | Ryuichi Takanobu | Jiaxin Wen | Dazhen Wan | Hongguang Li | Weiran Nie | Cheng Li | Wei Peng | Minlie Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Most language understanding models in task-oriented dialog systems are trained on a small amount of annotated training data, and evaluated in a small set from the same distribution. However, these models can lead to system failure or undesirable output when being exposed to natural language perturbation or variation in practice. In this paper, we conduct comprehensive evaluation and analysis with respect to the robustness of natural language understanding models, and introduce three important aspects related to language understanding in real-world dialog systems, namely, language variety, speech characteristics, and noise perturbation. We propose a model-agnostic toolkit LAUG to approximate natural language perturbations for testing the robustness issues in task-oriented dialog. Four data augmentation approaches covering the three aspects are assembled in LAUG, which reveals critical robustness issues in state-of-the-art models. The augmented dataset through LAUG can be used to facilitate future research on the robustness testing of language understanding in task-oriented dialog.

pdf bib
ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning
Yujia Qin | Yankai Lin | Ryuichi Takanobu | Zhiyuan Liu | Peng Li | Heng Ji | Minlie Huang | Maosong Sun | Jie Zhou
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Pre-trained Language Models (PLMs) have shown superior performance on various downstream Natural Language Processing (NLP) tasks. However, conventional pre-training objectives do not explicitly model relational facts in text, which are crucial for textual understanding. To address this issue, we propose a novel contrastive learning framework ERICA to obtain a deep understanding of the entities and their relations in text. Specifically, we define two novel pre-training tasks to better understand entities and relations: (1) the entity discrimination task to distinguish which tail entity can be inferred by the given head entity and relation; (2) the relation discrimination task to distinguish whether two relations are close or not semantically, which involves complex relational reasoning. Experimental results demonstrate that ERICA can improve typical PLMs (BERT and RoBERTa) on several language understanding tasks, including relation extraction, entity typing and question answering, especially under low-resource settings.

pdf bib
Turn-Level User Satisfaction Estimation in E-commerce Customer Service
Runze Liang | Ryuichi Takanobu | Feng-Lin Li | Ji Zhang | Haiqing Chen | Minlie Huang
Proceedings of the 4th Workshop on e-Commerce and NLP

User satisfaction estimation in the dialogue-based customer service is critical not only for helping developers find the system defects, but also making it possible to get timely human intervention for dissatisfied customers. In this paper, we investigate the problem of user satisfaction estimation in E-commerce customer service. In order to apply the estimator to online services for timely human intervention, we need to estimate the satisfaction score at each turn. However, in actual scenario we can only collect the satisfaction labels for the whole dialogue sessions via user feedback. To this end, we formalize the turn-level satisfaction estimation as a reinforcement learning problem, in which the model can be optimized with only session-level satisfaction labels. We conduct experiments on the dataset collected from a commercial customer service system, and compare our model with the supervised learning models. Extensive experiments show that the proposed method outperforms all the baseline models.

pdf bib
CR-Walker: Tree-Structured Graph Reasoning and Dialog Acts for Conversational Recommendation
Wenchang Ma | Ryuichi Takanobu | Minlie Huang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Growing interests have been attracted in Conversational Recommender Systems (CRS), which explore user preference through conversational interactions in order to make appropriate recommendation. However, there is still a lack of ability in existing CRS to (1) traverse multiple reasoning paths over background knowledge to introduce relevant items and attributes, and (2) arrange selected entities appropriately under current system intents to control response generation. To address these issues, we propose CR-Walker in this paper, a model that performs tree-structured reasoning on a knowledge graph, and generates informative dialog acts to guide language generation. The unique scheme of tree-structured reasoning views the traversed entity at each hop as part of dialog acts to facilitate language generation, which links how entities are selected and expressed. Automatic and human evaluations show that CR-Walker can arrive at more accurate recommendation, and generate more informative and engaging responses.

pdf bib
HyKnow: End-to-End Task-Oriented Dialog Modeling with Hybrid Knowledge Management
Silin Gao | Ryuichi Takanobu | Wei Peng | Qun Liu | Minlie Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Multi-Agent Task-Oriented Dialog Policy Learning with Role-Aware Reward Decomposition
Ryuichi Takanobu | Runze Liang | Minlie Huang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Many studies have applied reinforcement learning to train a dialog policy and show great promise these years. One common approach is to employ a user simulator to obtain a large number of simulated user experiences for reinforcement learning algorithms. However, modeling a realistic user simulator is challenging. A rule-based simulator requires heavy domain expertise for complex tasks, and a data-driven simulator requires considerable data and it is even unclear how to evaluate a simulator. To avoid explicitly building a user simulator beforehand, we propose Multi-Agent Dialog Policy Learning, which regards both the system and the user as the dialog agents. Two agents interact with each other and are jointly learned simultaneously. The method uses the actor-critic framework to facilitate pretraining and improve scalability. We also propose Hybrid Value Network for the role-aware reward decomposition to integrate role-specific domain knowledge of each agent in the task-oriented dialog. Results show that our method can successfully build a system policy and a user policy simultaneously, and two agents can achieve a high task success rate through conversational interaction.

pdf bib
ConvLab-2: An Open-Source Toolkit for Building, Evaluating, and Diagnosing Dialogue Systems
Qi Zhu | Zheng Zhang | Yan Fang | Xiang Li | Ryuichi Takanobu | Jinchao Li | Baolin Peng | Jianfeng Gao | Xiaoyan Zhu | Minlie Huang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We present ConvLab-2, an open-source toolkit that enables researchers to build task-oriented dialogue systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. As the successor of ConvLab, ConvLab-2 inherits ConvLab’s framework but integrates more powerful dialogue models and supports more datasets. Besides, we have developed an analysis tool and an interactive tool to assist researchers in diagnosing dialogue systems. The analysis tool presents rich statistics and summarizes common mistakes from simulated dialogues, which facilitates error analysis and system improvement. The interactive tool provides an user interface that allows developers to diagnose an assembled dialogue system by interacting with the system and modifying the output of each system component.

pdf bib
Joint Event Extraction with Hierarchical Policy Network
Peixin Huang | Xiang Zhao | Ryuichi Takanobu | Zhen Tan | Weidong Xiao
Proceedings of the 28th International Conference on Computational Linguistics

Most existing work on event extraction (EE) either follows a pipelined manner or uses a joint structure but is pipelined in essence. As a result, these efforts fail to utilize information interactions among event triggers, event arguments, and argument roles, which causes information redundancy. In view of this, we propose to exploit the role information of the arguments in an event and devise a Hierarchical Policy Network (HPNet) to perform joint EE. The whole EE process is fulfilled through a two-level hierarchical structure consisting of two policy networks for event detection and argument detection. The deep information interactions among the subtasks are realized, and it is more natural to deal with multiple events issue. Extensive experiments on ACE2005 and TAC2015 demonstrate the superiority of HPNet, leading to state-of-the-art performance and is more powerful for sentences with multiple events.

pdf bib
Is Your Goal-Oriented Dialog Model Performing Really Well? Empirical Analysis of System-wise Evaluation
Ryuichi Takanobu | Qi Zhu | Jinchao Li | Baolin Peng | Jianfeng Gao | Minlie Huang
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue

There is a growing interest in developing goal-oriented dialog systems which serve users in accomplishing complex tasks through multi-turn conversations. Although many methods are devised to evaluate and improve the performance of individual dialog components, there is a lack of comprehensive empirical study on how different components contribute to the overall performance of a dialog system. In this paper, we perform a system-wise evaluation and present an empirical analysis on different types of dialog systems which are composed of different modules in different settings. Our results show that (1) a pipeline dialog system trained using fine-grained supervision signals at different component levels often obtains better performance than the systems that use joint or end-to-end models trained on coarse-grained labels, (2) component-wise, single-turn evaluation results are not always consistent with the overall performance of a dialog system, and (3) despite the discrepancy between simulators and human users, simulated evaluation is still a valid alternative to the costly human evaluation especially in the early stage of development.

2019

pdf bib
Guided Dialog Policy Learning: Reward Estimation for Multi-Domain Task-Oriented Dialog
Ryuichi Takanobu | Hanlin Zhu | Minlie Huang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Dialog policy decides what and how a task-oriented dialog system will respond, and plays a vital role in delivering effective conversations. Many studies apply Reinforcement Learning to learn a dialog policy with the reward function which requires elaborate design and pre-specified user goals. With the growing needs to handle complex goals across multiple domains, such manually designed reward functions are not affordable to deal with the complexity of real-world tasks. To this end, we propose Guided Dialog Policy Learning, a novel algorithm based on Adversarial Inverse Reinforcement Learning for joint reward estimation and policy optimization in multi-domain task-oriented dialog. The proposed approach estimates the reward signal and infers the user goal in the dialog sessions. The reward estimator evaluates the state-action pairs so that it can guide the dialog policy at each dialog turn. Extensive experiments on a multi-domain dialog dataset show that the dialog policy guided by the learned reward function achieves remarkably higher task success than state-of-the-art baselines.

pdf bib
ConvLab: Multi-Domain End-to-End Dialog System Platform
Sungjin Lee | Qi Zhu | Ryuichi Takanobu | Zheng Zhang | Yaoqin Zhang | Xiang Li | Jinchao Li | Baolin Peng | Xiujun Li | Minlie Huang | Jianfeng Gao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We present ConvLab, an open-source multi-domain end-to-end dialog system platform, that enables researchers to quickly set up experiments with reusable components and compare a large set of different approaches, ranging from conventional pipeline systems to end-to-end neural models, in common environments. ConvLab offers a set of fully annotated datasets and associated pre-trained reference models. As a showcase, we extend the MultiWOZ dataset with user dialog act annotations to train all component models and demonstrate how ConvLab makes it easy and effortless to conduct complicated experiments in multi-domain end-to-end dialog settings.