Shuang Chen


2024

pdf bib
Taking a Deep Breath: Enhancing Language Modeling of Large Language Models with Sentinel Tokens
Weiyao Luo | Suncong Zheng | Heming Xia | Weikang Wang | Yan Lei | Tianyu Liu | Shuang Chen | Zhifang Sui
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models (LLMs) have shown promising efficacy across various tasks, becoming powerful tools in numerous aspects of human life. However, Transformer-based LLMs suffer a performance degradation when modeling long-term contexts due to they discard some information to reduce computational overhead. In this work, we propose a simple yet effective method to enable LLMs to take a deep breath, encouraging them to summarize information contained within discrete text chunks. Specifically, we segment the text into multiple chunks and insert special token <SR> at the end of each chunk. We then modify the attention mask to integrate the chunk’s information into the corresponding <SR> token. This facilitates LLMs to interpret information not only from historical individual tokens but also from the <SR> token, aggregating the chunk’s semantic information. Experiments on language modeling and out-of-domain downstream tasks validate the superiority of our approach.

2021

pdf bib
ReTraCk: A Flexible and Efficient Framework for Knowledge Base Question Answering
Shuang Chen | Qian Liu | Zhiwei Yu | Chin-Yew Lin | Jian-Guang Lou | Feng Jiang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

We present Retriever-Transducer-Checker (ReTraCk), a neural semantic parsing framework for large scale knowledge base question answering (KBQA). ReTraCk is designed as a modular framework to maintain high flexibility. It includes a retriever to retrieve relevant KB items efficiently, a transducer to generate logical form with syntax correctness guarantees and a checker to improve transduction procedure. ReTraCk is ranked at top1 overall performance on the GrailQA leaderboard and obtains highly competitive performance on the typical WebQuestionsSP benchmark. Our system can interact with users timely, demonstrating the efficiency of the proposed framework.

2019

pdf bib
Enhancing Neural Data-To-Text Generation Models with External Background Knowledge
Shuang Chen | Jinpeng Wang | Xiaocheng Feng | Feng Jiang | Bing Qin | Chin-Yew Lin
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent neural models for data-to-text generation rely on massive parallel pairs of data and text to learn the writing knowledge. They often assume that writing knowledge can be acquired from the training data alone. However, when people are writing, they not only rely on the data but also consider related knowledge. In this paper, we enhance neural data-to-text models with external knowledge in a simple but effective way to improve the fidelity of generated text. Besides relying on parallel data and text as in previous work, our model attends to relevant external knowledge, encoded as a temporary memory, and combines this knowledge with the context representation of data before generating words. This allows the model to infer relevant facts which are not explicitly stated in the data table from an external knowledge source. Experimental results on twenty-one Wikipedia infobox-to-text datasets show our model, KBAtt, consistently improves a state-of-the-art model on most of the datasets. In addition, to quantify when and why external knowledge is effective, we design a metric, KBGain, which shows a strong correlation with the observed performance boost. This result demonstrates the relevance of external knowledge and sparseness of original data are the main factors affecting system performance.