Tanmay Gupta
2024
WebWISE: Unlocking Web Interface Control for LLMs via Sequential Exploration
Heyi Tao
|
Sethuraman T V
|
Michal Shlapentokh-Rothman
|
Tanmay Gupta
|
Heng Ji
|
Derek Hoiem
Findings of the Association for Computational Linguistics: NAACL 2024
This paper investigates using Large Language Models (LLMs) to automatically perform web software tasks using click, scroll, and text in- put operations. Previous approaches, such as reinforcement learning (RL) or imitation learning, are inefficient to train and task-specific. Our method uses filtered Document Object Model (DOM) elements as observations and performs tasks step-by-step, sequentially generating small programs based on the current observations. We use in-context learning, either benefiting from a single manually provided example, or an automatically generated example based on a successful zero-shot trial. We evaluate our proposed method on the MiniWob++ benchmark. With only one in-context example, our WebWISE method using gpt-3.5-turbo achieves similar or better performance than other methods that require many demonstrations or trials.
Selective “Selective Prediction”: Reducing Unnecessary Abstention in Vision-Language Reasoning
Tejas Srinivasan
|
Jack Hessel
|
Tanmay Gupta
|
Bill Yuchen Lin
|
Yejin Choi
|
Jesse Thomason
|
Khyathi Chandu
Findings of the Association for Computational Linguistics: ACL 2024
Selective prediction minimizes incorrect predictions from vision-language models (VLMs) by allowing them to abstain from answering when uncertain. However, when deploying a vision-language system with low tolerance for inaccurate predictions, selective prediction may be over-cautious and abstain too frequently, even on many correct predictions. We introduce ReCoVERR, an inference-time algorithm to reduce the over-abstention of a selective vision-language system without increasing the error rate of the system’s predictions. When the VLM makes a low-confidence prediction, instead of abstaining ReCoVERR tries to find relevant clues in the image that provide additional evidence for the prediction. ReCoVERR uses an LLM to pose related questions to the VLM, collects high-confidence evidences, and if enough evidence confirms the prediction the system makes a prediction instead of abstaining. ReCoVERR enables three VLMs (BLIP2, InstructBLIP and LLaVA-1.5) to answer up to 20% more questions on the VQAv2 and A-OKVQA tasks without decreasing system accuracy, thus improving overall system reliability. Our code is available at https://github.com/tejas1995/ReCoVERR.
Search
Co-authors
- Heyi Tao 1
- Sethuraman T V 1
- Michal Shlapentokh-Rothman 1
- Heng Ji 1
- Derek Hoiem 1
- show all...