Natural language serves as the primary mode of communication when an intelligent agent with a physical presence engages with human beings. While a plethora of research focuses on natural language understanding (NLU), encompassing endeavors such as sentiment analysis, intent prediction, question answering, and summarization, the scope of NLU directed at situations necessitating tangible actions by an embodied agent remains limited. The inherent ambiguity and incompleteness inherent in natural language present challenges for intelligent agents striving to decipher human intention. To tackle this predicament head-on, we introduce a novel system known as task and argument grounding for Embodied agents (tagE). At its core, our system employs an inventive neural network model designed to extract a series of tasks from complex task instructions expressed in natural language. Our proposed model adopts an encoder-decoder framework enriched with nested decoding to effectively extract tasks and their corresponding arguments from these intricate instructions. These extracted tasks are then mapped (or grounded) to the robot’s established collection of skills, while the arguments find grounding in objects present within the environment. To facilitate the training and evaluation of our system, we have curated a dataset featuring complex instructions. The results of our experiments underscore the prowess of our approach, as it outperforms robust baseline models.
Pre-trained Generative models such as BART, T5, etc. have gained prominence as a preferred method for text generation in various natural language processing tasks, including abstractive long-form question answering (QA) and summarization. However, the potential of generative models in extractive QA tasks, where discriminative models are commonly employed, remains largely unexplored. Discriminative models often encounter challenges associated with label sparsity, particularly when only a small portion of the context contains the answer. The challenge is more pronounced for multi-span answers. In this work, we introduce a novel approach that uses the power of pre-trained generative models to address extractive QA tasks by generating indexes corresponding to context tokens or sentences that form part of the answer. Through comprehensive evaluations on multiple extractive QA datasets, including MultiSpanQA, BioASQ, MASHQA, and WikiQA, we demonstrate the superior performance of our proposed approach compared to existing state-of-the-art models.
Extracting relational triples from text is a crucial task for constructing knowledge bases. Recent advancements in joint entity and relation extraction models have demonstrated remarkable F1 scores (≥ 90%) in accurately extracting relational triples from free text. However, these models have been evaluated under restrictive experimental settings and unrealistic datasets. They overlook sentences with zero triples (zerocardinality), thereby simplifying the task. In this paper, we present a benchmark study of state-of-the-art joint entity and relation extraction models under a more realistic setting. We include sentences that lack any triples in our experiments, providing a comprehensive evaluation. Our findings reveal a significant decline (approximately 10-15% in one dataset and 6-14% in another dataset) in the models’ F1 scores within this realistic experimental setup. Furthermore, we propose a two-step modeling approach that utilizes a simple BERT-based classifier. This approach leads to overall performance improvement in these models within the realistic experimental setting.
Predicting difficulty of questions is crucial for technical interviews. However, such questions are long-form and more open-ended than factoid and multiple choice questions explored so far for question difficulty prediction. Existing models also require large volumes of candidate response data for training. We study weak-supervision and use unsupervised algorithms for both question generation and difficulty prediction. We create a dataset of interview questions with difficulty scores for deep learning and use it to evaluate SOTA models for question difficulty prediction trained using weak supervision. Our analysis brings out the task’s difficulty as well as the promise of weak supervision for it.
Many e-commerce websites provide Product-related Question Answering (PQA) platform where potential customers can ask questions related to a product, and other consumers can post an answer to that question based on their experience. Recently, there has been a growing interest in providing automated responses to product questions. In this paper, we investigate the suitability of the generative approach for PQA. We use state-of-the-art generative models proposed by Deng et al.(2020) and Lu et al.(2020) for this purpose. On closer examination, we find several drawbacks in this approach: (1) input reviews are not always utilized significantly for answer generation, (2) the performance of the models is abysmal while answering the numerical questions, (3) many of the generated answers contain phrases like “I do not know” which are taken from the reference answer in training data, and these answers do not convey any information to the customer. Although these approaches achieve a high ROUGE score, it does not reflect upon these shortcomings of the generated answers. We hope that our analysis will lead to more rigorous PQA approaches, and future research will focus on addressing these shortcomings in PQA.
We explore the task of automated generation of technical interview questions from a given textbook. Such questions are different from those for reading comprehension studied in question generation literature. We curate a context based interview questions data set for Machine Learning and Deep Learning from two popular textbooks. We first explore the possibility of using a large generative language model (GPT-3) for this task in a zero shot setting. We then evaluate the performance of smaller generative models such as BART fine-tuned on weakly supervised data obtained using GPT-3 and hand-crafted templates. We deploy an automatic question importance assignment technique to figure out suitability of a question in a technical interview. It improves the evaluation results in many dimensions. We dissect the performance of these models for this task and also scrutinize the suitability of questions generated by them for use in technical interviews.
In the last few years, several attempts have been made on extracting information from material science research domain. Material Science research articles are a rich source of information about various entities related to material science such as names of the materials used for experiments, the computational software used along with its parameters, the method used in the experiments, etc. But the distribution of these entities is not uniform across different sections of research articles. Most of the sentences in the research articles do not contain any entity. In this work, we first use a sentence-level classifier to identify sentences containing at least one entity mention. Next, we apply the information extraction models only on the filtered sentences, to extract various entities of interest. Our experiments for named entity recognition in the material science research articles show that this additional sentence-level classification step helps to improve the F1 score by more than 4%.
We explore the task of generating long-form technical questions from textbooks. Semi-structured metadata of a textbook — the table of contents and the index — provide rich cues for technical question generation. Existing literature for long-form question generation focuses mostly on reading comprehension assessment, and does not use semi-structured metadata for question generation. We design unsupervised template based algorithms for generating questions based on structural and contextual patterns in the index and ToC. We evaluate our approach on textbooks on diverse subjects and show that our approach generates high quality questions of diverse types. We show that, in comparison, zero-shot question generation using pre-trained LLMs on the same meta-data has much poorer quality.
Aspect Sentiment Triplet Extraction (ASTE) deals with extracting opinion triplets, consisting of an opinion target or aspect, its associated sentiment, and the corresponding opinion term/span explaining the rationale behind the sentiment. Existing research efforts are majorly tagging-based. Among the methods taking a sequence tagging approach, some fail to capture the strong interdependence between the three opinion factors, whereas others fall short of identifying triplets with overlapping aspect/opinion spans. A recent grid tagging approach on the other hand fails to capture the span-level semantics while predicting the sentiment between an aspect-opinion pair. Different from these, we present a tagging-free solution for the task, while addressing the limitations of the existing works. We adapt an encoder-decoder architecture with a Pointer Network-based decoding framework that generates an entire opinion triplet at each time step thereby making our solution end-to-end. Interactions between the aspects and opinions are effectively captured by the decoder by considering their entire detected spans while predicting their connecting sentiment. Extensive experiments on several benchmark datasets establish the better efficacy of our proposed approach, especially in recall, and in predicting multiple and aspect/opinion-overlapped triplets from the same review sentence. We report our results both with and without BERT and also demonstrate the utility of domain-specific BERT post-training for the task.
Distantly supervised datasets for relation extraction mostly focus on sentence-level extraction, and they cover very few relations. In this work, we propose cross-document relation extraction, where the two entities of a relation tuple appear in two different documents that are connected via a chain of common entities. Following this idea, we create a dataset for two-hop relation extraction, where each chain contains exactly two documents. Our proposed dataset covers a higher number of relations than the publicly available sentence-level datasets. We also propose a hierarchical entity graph convolutional network (HEGCN) model for this task that improves performance by 1.1% F1 score on our two-hop relation extraction dataset, compared to some strong neural baselines.
Distantly supervised models are very popular for relation extraction since we can obtain a large amount of training data using the distant supervision method without human annotation. In distant supervision, a sentence is considered as a source of a tuple if the sentence contains both entities of the tuple. However, this condition is too permissive and does not guarantee the presence of relevant relation-specific information in the sentence. As such, distantly supervised training data contains much noise which adversely affects the performance of the models. In this paper, we propose a self-ensemble filtering mechanism to filter out the noisy samples during the training process. We evaluate our proposed framework on the New York Times dataset which is obtained via distant supervision. Our experiments with multiple state-of-the-art neural relation extraction models show that our proposed filtering mechanism improves the robustness of the models and increases their F1 scores.
Relation extraction is the task of determining the relation between two entities in a sentence. Distantly-supervised models are popular for this task. However, sentences can be long and two entities can be located far from each other in a sentence. The pieces of evidence supporting the presence of a relation between two entities may not be very direct, since the entities may be connected via some indirect links such as a third entity or via co-reference. Relation extraction in such scenarios becomes more challenging as we need to capture the long-distance interactions among the entities and other words in the sentence. Also, the words in a sentence do not contribute equally in identifying the relation between the two entities. To address this issue, we propose a novel and effective attention model which incorporates syntactic information of the sentence and a multi-factor attention mechanism. Experiments on the New York Times corpus show that our proposed model outperforms prior state-of-the-art models.
We present a free web-based CAT tool called CATaLog Online which provides a novel and user-friendly online CAT environment for post-editors/translators. The goal is to support distributed translation, reduce post-editing time and effort, improve the post-editing experience and capture data for incremental MT/APE (automatic post-editing) and translation process research. The tool supports individual as well as batch mode file translation and provides translations from three engines – translation memory (TM), MT and APE. TM suggestions are color coded to accelerate the post-editing task. The users can integrate their personal TM/MT outputs. The tool remotely monitors and records post-editing activities generating an extensive range of post-editing logs.
This paper presents CATaLog online, a new web-based MT and TM post-editing tool. CATaLog online is a freeware software that can be used through a web browser and it requires only a simple registration. The tool features a number of editing and log functions similar to the desktop version of CATaLog enhanced with several new features that we describe in detail in this paper. CATaLog online is designed to allow users to post-edit both translation memory segments as well as machine translation output. The tool provides a complete set of log information currently not available in most commercial CAT tools. Log information can be used both for project management purposes as well as for the study of the translation process and translator’s productivity.