2024
pdf
bib
abs
A + B: A General Generator-Reader Framework for Optimizing LLMs to Unleash Synergy Potential
Wei Tang
|
Yixin Cao
|
Jiahao Ying
|
Bo Wang
|
Yuyue Zhao
|
Yong Liao
|
Peng Zhou
Findings of the Association for Computational Linguistics: ACL 2024
Retrieval-Augmented Generation (RAG) is an effective solution to supplement necessary knowledge to large language models (LLMs). Targeting its bottleneck of retriever performance, “generate-then-read” pipeline is proposed to replace the retrieval stage with generation from the LLM itself. Although promising, this research direction is underexplored and still cannot work in the scenario when source knowledge is given. In this paper, we formalize a general “A + B” framework with varying combinations of foundation models and types for systematic investigation. We explore the efficacy of the base and chat versions of LLMs and found their different functionalities suitable for generator A and reader B, respectively. Their combinations consistently outperform single models, especially in complex scenarios. Furthermore, we extend the application of the “A + B” framework to scenarios involving source documents through continuous learning, enabling the direct integration of external knowledge into LLMs. This approach not only facilitates effective acquisition of new knowledge but also addresses the challenges of safety and helpfulness post-adaptation. The paper underscores the versatility of the “A + B” framework, demonstrating its potential to enhance the practical application of LLMs across various domains.
pdf
bib
abs
QRMeM: Unleash the Length Limitation through Question then Reflection Memory Mechanism
Bo Wang
|
Heyan Huang
|
Yixin Cao
|
Jiahao Ying
|
Wei Tang
|
Chong Feng
Findings of the Association for Computational Linguistics: EMNLP 2024
While LLMs have made notable advancements in natural language processing, they continue to struggle with processing extensive text. Memory mechanisms offer a flexible solution for managing long contexts, utilizing techniques such as compression, summarization, and structuring to facilitate nuanced and efficient handling of large volumes of text. However, existing techniques face challenges with static knowledge integration, leading to insufficient adaptation to task-specific needs and missing multi-segmentation relationships, which hinders the dynamic reorganization and logical combination of relevant segments during the response process. To address these issues, we introduce a novel strategy, Question then Reflection Memory Mechanism (QRMeM), which incorporates a dual-structured memory pool. This pool synergizes static textual content with structured graph guidance, fostering a reflective trial-and-error approach for navigating and identifying relevant segments. Our evaluation across multiple-choice questions (MCQ) and multi-document question answering (Multi-doc QA) benchmarks showcases QRMeM’s enhanced performance compared to existing approaches.
pdf
bib
abs
LLMs-as-Instructors: Learning from Errors Toward Automating Model Improvement
Jiahao Ying
|
Mingbao Lin
|
Yixin Cao
|
Wei Tang
|
Bo Wang
|
Qianru Sun
|
Xuanjing Huang
|
Shuicheng Yan
Findings of the Association for Computational Linguistics: EMNLP 2024
This paper introduces the innovative “LLMs-as-Instructors” framework, which leverages the advanced Large Language Models (LLMs) to autonomously enhance the training of smaller target models. Inspired by the theory of “Learning from Errors”, this framework employs an instructor LLM to meticulously analyze the specific errors within a target model, facilitating targeted and efficient training cycles. Within this framework, we implement two strategies: “Learning from Error,” which focuses solely on incorrect responses to tailor training data, and “Learning from Error by Contrast,” which uses contrastive learning to analyze both correct and incorrect responses for a deeper understanding of errors. Our empirical studies, conducted with several open-source models, demonstrate significant improvements across multiple benchmarks, including mathematical reasoning, coding abilities, and factual knowledge. Notably, the refined Llama-3-8b-Instruction has outperformed ChatGPT, illustrating the effectiveness of our approach. By leveraging the strengths of both strategies, we have attained a more balanced performance improvement on both in-domain and out-of-domain benchmarks.
pdf
bib
abs
HW-TSC at TextGraphs-17 Shared Task: Enhancing Inference Capabilities of LLMs with Knowledge Graphs
Wei Tang
|
Xiaosong Qiao
|
Xiaofeng Zhao
|
Min Zhang
|
Chang Su
|
Yuang Li
|
Yinglu Li
|
Yilun Liu
|
Feiyu Yao
|
Shimin Tao
|
Hao Yang
|
He Xianghui
Proceedings of TextGraphs-17: Graph-based Methods for Natural Language Processing
In this paper, we present an effective method for TextGraphs-17 Shared Task. This task requires selecting an entity from the candidate entities that is relevant to the given question and answer. The selection process is aided by utilizing the shortest path graph in the knowledge graph, connecting entities in the query to the candidate entity. This task aims to explore how to enhance LLMs output with KGs, although current LLMs have certain logical reasoning capabilities, they may not be certain about their own outputs, and the answers they produce may be correct by chance through incorrect paths. In this case, we have introduced a LLM prompt design strategy based on self-ranking and emotion. Specifically, we let the large model score its own answer choices to reflect its confidence in the answer. Additionally, we add emotional incentives to the prompts to encourage the model to carefully examine the questions. Our submissions was conducted under zero-resource setting, and we achieved the second place in the task with an F1-score of 0.8321.
2023
pdf
bib
abs
Deeply Coupled Cross-Modal Prompt Learning
Xuejing Liu
|
Wei Tang
|
Jinghui Lu
|
Rui Zhao
|
Zhaojun Guo
|
Fei Tan
Findings of the Association for Computational Linguistics: ACL 2023
Recent advancements in multimodal foundation models (e.g., CLIP) have excelled in zero-shot generalization. Prompt tuning involved in the knowledge transfer from foundation models to downstream tasks has gained significant attention recently. Existing prompt-tuning methods in cross-modal learning, however, either solely focus on language branch, or learn vision-language interaction in a shallow mechanism. In this context, we propose a Deeply coupled Cross-modal Prompt learning (DCP) method based on CLIP. DCP flexibly accommodates the interplay between vision and language with a Cross-Modal Prompt Attention (CMPA) mechanism, which enables the mutual exchange of respective representation through a well-connected multi-head attention progressively and strongly. We then conduct comprehensive few-shot learning experiments on 11 image classification datasets and analyze the robustness to domain shift as well. Thorough experimental analysis evidently demonstrates the superb few-shot generalization and compelling domain adaption capacity of a well-executed DCP.
2022
pdf
bib
abs
UniRel: Unified Representation and Interaction for Joint Relational Triple Extraction
Wei Tang
|
Benfeng Xu
|
Yuyue Zhao
|
Zhendong Mao
|
Yifeng Liu
|
Yong Liao
|
Haiyong Xie
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Relational triple extraction is challenging for its difficulty in capturing rich correlations between entities and relations. Existing works suffer from 1) heterogeneous representations of entities and relations, and 2) heterogeneous modeling of entity-entity interactions and entity-relation interactions. Therefore, the rich correlations are not fully exploited by existing works. In this paper, we propose UniRel to address these challenges. Specifically, we unify the representations of entities and relations by jointly encoding them within a concatenated natural language sequence, and unify the modeling of interactions with a proposed Interaction Map, which is built upon the off-the-shelf self-attention mechanism within any Transformer block. With comprehensive experiments on two popular relational triple extraction datasets, we demonstrate that UniRel is more effective and computationally efficient. The source code is available at https://github.com/wtangdev/UniRel.