Xi Zeng


2024

pdf bib
Improving In-Context Learning with Prediction Feedback for Sentiment Analysis
Hongling Xu | Qianlong Wang | Yice Zhang | Min Yang | Xi Zeng | Bing Qin | Ruifeng Xu
Findings of the Association for Computational Linguistics ACL 2024

Large language models (LLMs) have achieved promising results in sentiment analysis through the in-context learning (ICL) paradigm. However, their ability to distinguish subtle sentiments still remains a challenge. Inspired by the human ability to adjust understanding via feedback, this paper enhances ICL by incorporating prior predictions and feedback, aiming to rectify sentiment misinterpretation of LLMs. Specifically, the proposed framework consists of three steps: (1) acquiring prior predictions of LLMs, (2) devising predictive feedback based on correctness, and (3) leveraging a feedback-driven prompt to refine sentiment understanding. Experimental results across nine sentiment analysis datasets demonstrate the superiority of our framework over conventional ICL methods, with an average F1 improvement of 5.95%.

pdf bib
Discourse Structure-Aware Prefix for Generation-Based End-to-End Argumentation Mining
Yang Sun | Guanrong Chen | Caihua Yang | Jianzhu Bao | Bin Liang | Xi Zeng | Min Yang | Ruifeng Xu
Findings of the Association for Computational Linguistics ACL 2024

End-to-end argumentation mining (AM) aims to extract the argumentation structure including argumentation components and their argumentation relations from text. Recent developments in end-to-end AM models have demonstrated significant progress by redefining the AM task as a sequence generation task, exhibiting simplicity and competitive performance. Nevertheless, these models overlook the integration of supplementary discourse structure information, a crucial factor for comprehending argumentation structures, resulting in suboptimal outcomes. In this study, we propose the DENIM framework, which generates discourse structure-aware prefixes for each layer of the generation model. These prefixes imbue the generation-based AM model with discourse structures, thereby augmenting the overall generation process. Moreover, we introduce a multi-task prompt coupled with a three-step decoding strategy, aiming to optimize the efficiency and effectiveness of argumentation structure decoding. Extensive experiments and analyses on two benchmark datasets show that DENIM achieves state-of-the-art performances on two AM benchmarks.