2024
pdf
bib
abs
MARVEL: Unlocking the Multi-Modal Capability of Dense Retrieval via Visual Module Plugin
Tianshuo Zhou
|
Sen Mei
|
Xinze Li
|
Zhenghao Liu
|
Chenyan Xiong
|
Zhiyuan Liu
|
Yu Gu
|
Ge Yu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
This paper proposes Multi-modAl Retrieval model via Visual modulE pLugin (MARVEL), which learns an embedding space for queries and multi-modal documents to conduct retrieval. MARVEL encodes queries and multi-modal documents with a unified encoder model, which helps to alleviate the modality gap between images and texts. Specifically, we enable the image understanding ability of the well-trained dense retriever, T5-ANCE, by incorporating the visual module’s encoded image features as its inputs. To facilitate the multi-modal retrieval tasks, we build the ClueWeb22-MM dataset based on the ClueWeb22 dataset, which regards anchor texts as queries, and extracts the related text and image documents from anchor-linked web pages. Our experiments show that MARVEL significantly outperforms the state-of-the-art methods on the multi-modal retrieval dataset WebQA and ClueWeb22-MM. MARVEL provides an opportunity to broaden the advantages of text retrieval to the multi-modal scenario. Besides, we also illustrate that the language model has the ability to extract image semantics and partly map the image features to the input word embedding space. All codes are available at https://github.com/OpenMatch/MARVEL.
pdf
bib
abs
Towards Verifiable Generation: A Benchmark for Knowledge-aware Language Model Attribution
Xinze Li
|
Yixin Cao
|
Liangming Pan
|
Yubo Ma
|
Aixin Sun
Findings of the Association for Computational Linguistics: ACL 2024
Although achieving great success, Large Language Models (LLMs) usually suffer from unreliable hallucinations. Although language attribution can be a potential solution, there are no suitable benchmarks and evaluation metrics to attribute LLMs to structured knowledge. In this paper, we define a new task of Knowledge-aware Language Model Attribution (KaLMA) that improves upon three core concerns with conventional attributed LMs. First, we extend attribution source from unstructured texts to Knowledge Graph (KG), whose rich structures benefit both the attribution performance and working scenarios. Second, we propose a new “Conscious Incompetence” setting considering the incomplete knowledge repository, where the model identifies the need for supporting knowledge beyond the provided KG. Third, we propose a comprehensive automatic evaluation metric encompassing text quality, citation quality, and text citation alignment. To implement the above innovations, we build a dataset in biography domain BioKaLMA via evolutionary question generation strategy, to control the question complexity and necessary knowledge to the answer. For evaluation, we develop a baseline solution and demonstrate the room for improvement in LLMs’ citation generation, emphasizing the importance of incorporating the “Conscious Incompetence” setting, and the critical role of retrieval accuracy.
pdf
bib
abs
Data Augmentation using LLMs: Data Perspectives, Learning Paradigms and Challenges
Bosheng Ding
|
Chengwei Qin
|
Ruochen Zhao
|
Tianze Luo
|
Xinze Li
|
Guizhen Chen
|
Wenhan Xia
|
Junjie Hu
|
Anh Tuan Luu
|
Shafiq Joty
Findings of the Association for Computational Linguistics: ACL 2024
In the rapidly evolving field of large language models (LLMs), data augmentation (DA) has emerged as a pivotal technique for enhancing model performance by diversifying training examples without the need for additional data collection. This survey explores the transformative impact of LLMs on DA, particularly addressing the unique challenges and opportunities they present in the context of natural language processing (NLP) and beyond. From both data and learning perspectives, we examine various strategies that utilize LLMs for data augmentation, including a novel exploration of learning paradigms where LLM-generated data is used for diverse forms of further training. Additionally, this paper highlights the primary open challenges faced in this domain, ranging from controllable data augmentation to multi-modal data augmentation. This survey highlights a paradigm shift introduced by LLMs in DA, and aims to serve as a comprehensive guide for researchers and practitioners.
2023
pdf
bib
abs
Take a Break in the Middle: Investigating Subgoals towards Hierarchical Script Generation
Xinze Li
|
Yixin Cao
|
Muhao Chen
|
Aixin Sun
Findings of the Association for Computational Linguistics: ACL 2023
Goal-oriented Script Generation is a new task of generating a list of steps that can fulfill the given goal. In this paper, we propose to extend the task from the perspective of cognitive theory. Instead of a simple flat structure, the steps are typically organized hierarchically — Human often decompose a complex task into subgoals, where each subgoal can be further decomposed into steps. To establish the benchmark, we contribute a new dataset, propose several baseline methods, and set up evaluation metrics. Both automatic and human evaluation verify the high-quality of dataset, as well as the effectiveness of incorporating subgoals into hierarchical script generation. Furthermore, We also design and evaluate the model to discover subgoal, and find that it is a bit more difficult to decompose the goals than summarizing from segmented steps.
pdf
bib
abs
Structure-Aware Language Model Pretraining Improves Dense Retrieval on Structured Data
Xinze Li
|
Zhenghao Liu
|
Chenyan Xiong
|
Shi Yu
|
Yu Gu
|
Zhiyuan Liu
|
Ge Yu
Findings of the Association for Computational Linguistics: ACL 2023
This paper presents Structure Aware Dense Retrieval (SANTA) model, which encodes user queries and structured data in one universal embedding space for retrieving structured data. SANTA proposes two pretraining methods to make language models structure-aware and learn effective representations for structured data: 1) Structured Data Alignment, which utilizes the natural alignment relations between structured data and unstructured data for structure-aware pretraining. It contrastively trains language models to represent multi-modal text data and teaches models to distinguish matched structured data for unstructured texts. 2) Masked Entity Prediction, which designs an entity-oriented mask strategy and asks language models to fill in the masked entities. Our experiments show that SANTA achieves state-of-the-art on code search and product search and conducts convincing results in the zero-shot setting. SANTA learns tailored representations for multi-modal text data by aligning structured and unstructured data pairs and capturing structural semantics by masking and predicting entities in the structured data. All codes are available at
https://github.com/OpenMatch/OpenMatch.
2022
pdf
bib
abs
MMEKG: Multi-modal Event Knowledge Graph towards Universal Representation across Modalities
Yubo Ma
|
Zehao Wang
|
Mukai Li
|
Yixin Cao
|
Meiqi Chen
|
Xinze Li
|
Wenqi Sun
|
Kunquan Deng
|
Kun Wang
|
Aixin Sun
|
Jing Shao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations
Events are fundamental building blocks of real-world happenings. In this paper, we present a large-scale, multi-modal event knowledge graph named MMEKG. MMEKG unifies different modalities of knowledge via events, which complement and disambiguate each other. Specifically, MMEKG incorporates (i) over 990 thousand concept events with 644 relation types to cover most types of happenings, and (ii) over 863 million instance events connected through 934 million relations, which provide rich contextual information in texts and/or images. To collect billion-scale instance events and relations among them, we additionally develop an efficient yet effective pipeline for textual/visual knowledge extraction system. We also develop an induction strategy to create million-scale concept events and a schema organizing all events and relations in MMEKG. To this end, we also provide a pipeline enabling our system to seamlessly parse texts/images to event graphs and to retrieve multi-modal knowledge at both concept- and instance-levels.