Yanfeng Wang


2024

pdf bib
M3AV: A Multimodal, Multigenre, and Multipurpose Audio-Visual Academic Lecture Dataset
Zhe Chen | Heyang Liu | Wenyi Yu | Guangzhi Sun | Hongcheng Liu | Ji Wu | Chao Zhang | Yu Wang | Yanfeng Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Publishing open-source academic video recordings is an emergent and prevalent approach to sharing knowledge online. Such videos carry rich multimodal information including speech, the facial and body movements of the speakers, as well as the texts and pictures in the slides and possibly even the papers. Although multiple academic video datasets have been constructed and released, few of them support both multimodal content recognition and understanding tasks, which is partially due to the lack of high-quality human annotations. In this paper, we propose a novel multimodal, multigenre, and multipurpose audio-visual academic lecture dataset (M3AV), which has almost 367 hours of videos from five sources covering computer science, mathematics, and medical and biology topics. With high-quality human annotations of the slide text and spoken words, in particular high-valued name entities, the dataset can be used for multiple audio-visual recognition and understanding tasks. Evaluations performed on contextual speech recognition, speech synthesis, and slide and script generation tasks demonstrate that the diversity of M3AV makes it a challenging dataset.

pdf bib
MM-SAP: A Comprehensive Benchmark for Assessing Self-Awareness of Multimodal Large Language Models in Perception
Yuhao Wang | Yusheng Liao | Heyang Liu | Hongcheng Liu | Yanfeng Wang | Yu Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated exceptional capabilities in visual perception and understanding. However, these models also suffer from hallucinations, which limit their reliability as AI systems. We believe that these hallucinations are partially due to the models’ struggle with understanding what they can and cannot perceive from images, a capability we refer to as self-awareness in perception. Despite its importance, this aspect of MLLMs has been overlooked in prior studies. In this paper, we aim to define and evaluate the self-awareness of MLLMs in perception. To do this, we first introduce the knowledge quadrant in perception, which helps define what MLLMs know and do not know about images. Using this framework, we propose a novel benchmark, the Self-Awareness in Perception for MLLMs (MM-SAP), specifically designed to assess this capability. We apply MM-SAP to a variety of popular MLLMs, offering a comprehensive analysis of their self-awareness and providing detailed insights. The experiment results reveal that current MLLMs possess limited self-awareness capabilities, pointing to a crucial area for future advancement in the development of trustworthy MLLMs. Code and data are available at https://github.com/YHWmz/MM-SAP.

pdf bib
MatchTime: Towards Automatic Soccer Game Commentary Generation
Jiayuan Rao | Haoning Wu | Chang Liu | Yanfeng Wang | Weidi Xie
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Soccer is a globally popular sport with a vast audience, in this paper, we consider constructing an automatic soccer game commentary model to improve the audiences’ viewing experience. In general, we make the following contributions: *First*, observing the prevalent video-text misalignment in existing datasets, we manually annotate timestamps for 49 matches, establishing a more robust benchmark for soccer game commentary generation, termed as *SN-Caption-test-align*; *Second*, we propose a multi-modal temporal alignment pipeline to automatically correct and filter the existing dataset at scale, creating a higher-quality soccer game commentary dataset for training, denoted as *MatchTime*; *Third*, based on our curated dataset, we train an automatic commentary generation model, named **MatchVoice**. Extensive experiments and ablation studies have demonstrated the effectiveness of our alignment pipeline, and training model on the curated datasets achieves state-of-the-art performance for commentary generation, showcasing that better alignment can lead to significant performance improvements in downstream tasks.

pdf bib
KnowledgeSG: Privacy-Preserving Synthetic Text Generation with Knowledge Distillation from Server
WenHao Wang | Xiaoyu Liang | Rui Ye | Jingyi Chai | Siheng Chen | Yanfeng Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The success of large language models (LLMs) facilitate many parties to fine-tune LLMs on their own private data. However, this practice raises privacy concerns due to the memorization of LLMs. Existing solutions, such as utilizing synthetic data for substitution, struggle to simultaneously improve performance and preserve privacy.They either rely on a local model for generation, resulting in a performance decline, or take advantage of APIs, directly exposing the data to API servers. To address this issue, we propose KnowledgeSG, a novel client-server framework which enhances synthetic data quality and improves model performance while ensuring privacy. We achieve this by learning local knowledge from the private data with differential privacy (DP) and distilling professional knowledge from the server. Additionally, inspired by federated learning, we transmit models rather than data between the client and server to prevent privacy leakage.Extensive experiments in medical and financial domains demonstrate the effectiveness of *KnowledgeSG*. Our code is now publicly available at https://github.com/wwh0411/KnowledgeSG.

pdf bib
CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios
Zetian Ouyang | Yishuai Qiu | Linlin Wang | Gerard De Melo | Ya Zhang | Yanfeng Wang | Liang He
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

With the proliferation of Large Language Models (LLMs) in diverse domains, there is a particular need for unified evaluation standards in clinical medical scenarios, where models need to be examined very thoroughly. We present CliMedBench, a comprehensive benchmark with 14 expert-guided core clinical scenarios specifically designed to assess the medical ability of LLMs across 7 pivot dimensions. It comprises 33,735 questions derived from real-world medical reports of top-tier tertiary hospitals and authentic examination exercises. The reliability of this benchmark has been confirmed in several ways. Subsequent experiments with existing LLMs have led to the following findings: (i) Chinese medical LLMs underperform on this benchmark, especially where medical reasoning and factual consistency are vital, underscoring the need for advances in clinical knowledge and diagnostic accuracy. (ii) Several general-domain LLMs demonstrate substantial potential in medical clinics, while the limited input capacity of many medical LLMs hinders their practical use. These findings reveal both the strengths and limitations of LLMs in clinical scenarios and offer critical insights for medical research.

pdf bib
RA2FD: Distilling Faithfulness into Efficient Dialogue Systems
Zhiyuan Zhu | Yusheng Liao | Chenxin Xu | Yunfeng Guan | Yanfeng Wang | Yu Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Generating faithful and fast responses is crucial in the knowledge-grounded dialogue. Retrieval Augmented Generation (RAG) strategies are effective but are inference inefficient, while previous Retrieval Free Generations (RFG) are more efficient but sacrifice faithfulness. To solve this faithfulness-efficiency trade-off dilemma, we propose a novel retrieval-free model training scheme named Retrieval Augmented to Retrieval Free Distillation (RA2FD) to build a retrieval-free model that achieves higher faithfulness than the previous RFG method while maintaining inference efficiency. The core idea of RA2FD is to use a teacher-student framework to distill the faithfulness capacity of a teacher, which is an oracle RAG model that generates multiple knowledge-infused responses. The student retrieval-free model learns how to generate faithful responses from these teacher labels through sequence-level distillation and contrastive learning. Experiment results show that RA2FD let the faithfulness performance of an RFG model surpass the previous SOTA RFG baseline on three knowledge-grounded dialogue datasets by an average of 33% and even matching an RAG model’s performance while significantly improving inference efficiency. Our code is available at https://github.com/zzysjtuiwct/RA2FD.

pdf bib
RaTEScore: A Metric for Radiology Report Generation
Weike Zhao | Chaoyi Wu | Xiaoman Zhang | Ya Zhang | Yanfeng Wang | Weidi Xie
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

This paper introduces a novel, entity-aware metric, termed as Radiological Report (Text) Evaluation (RaTEScore), to assess the quality of medical reports generated by AI models. RaTEScore emphasizes crucial medical entities such as diagnostic outcomes and anatomical details, and is robust against complex medical synonyms and sensitive to negation expressions. Technically, we developed a comprehensive medical NER dataset, RaTE-NER, and trained an NER model specifically for this purpose. This model enables the decomposition of complex radiological reports into constituent medical entities. The metric itself is derived by comparing the similarity of entity embeddings, obtained from a language model, based on their types and relevance to clinical significance. Our evaluations demonstrate that RaTEScore aligns more closely with human preference than existing metrics, validated both on established public benchmarks and our newly proposed RaTE-Eval benchmark.

pdf bib
SDA: Semantic Discrepancy Alignment for Text-conditioned Image Retrieval
Yuchen Yang | Yu Wang | Yanfeng Wang
Findings of the Association for Computational Linguistics: ACL 2024

In the realm of text-conditioned image retrieval, models utilize a query composed of a reference image and modification text to retrieve corresponding images. Despite its significance, this task is fraught with challenges, including small-scale datasets due to labeling costs and the complexity of attributes in modification texts. These challenges often result in models learning a generalized representation of the query, thereby missing the semantic correlations of image and text attributes.In this paper, we introduce a general boosting framework designed to address these issues by employing semantic discrepancy alignment. Our framework first leverages the ChatGPT to augment text data by modifying the original modification text’s attributes. The augmented text is then combined with the original reference image to create an augmented composed query. Then we generate corresponding images using GPT-4 for the augmented composed query.We realize the cross-modal semantic discrepancy alignment by formulating distance consistency and neighbor consistency between the image and text domains. Through this novel approach, attribute in the text domain can be more effectively transferred to the image domain, enhancing retrieval performance. Extensive experiments on three prominent datasets validate the effectiveness of our approach, with state-of-the-art results on a majority of evaluation metrics compared to various baseline methods.

pdf bib
DictLLM: Harnessing Key-Value Data Structures with Large Language Models for Enhanced Medical Diagnostics
YiQiu Guo | Yuchen Yang | Ya Zhang | Yu Wang | Yanfeng Wang
Findings of the Association for Computational Linguistics: ACL 2024

Structured data offers an efficient means of organizing information. Exsisting text-serialization based methods for processing structured data using large language models (LLMs) are not designed to explicitly capture the heterogeneity of structured data. Such methods are suboptimal for LLMs to process structured data, and may lead to large input token size and poor robustness to input perturbation. In this paper, we propose a novel framework called DictLLM, which is an efficient and effective framework for the modeling of medical lab report to deal with the report-assisted diagnosis generation task. DictLLM introduce 1) group positional encoding to maintain the permutation invariance, 2) hierarchical attention bias to capture the inductive bias of structured data, and 3) a optimal transport alignment layer to align the embeddings generated by the dict encoder with the LLM, producing a list of fixed-length virtual tokens. We conduct experiments with multiple LLM models on a large-scale real-world medical lab report dataset for automatic diagnosis generation. The results show that our proposed framework outperforms the baseline methods and few-shot GPT-4 in terms of both Rouge-L and Knowledge F1 score. We also conduct multiple experiments and analyze the scalability and robustness of our proposed framework, demonstrating the superiority of our method in modeling the heterogeneous structure of medical dictionaries data.

pdf bib
CF-TCIR: A Compositor-Free Framework for Hierarchical Text-Conditioned Image Retrieval
Yuchen Yang | Yu Wang | Yanfeng Wang
Findings of the Association for Computational Linguistics: ACL 2024

In text-conditioned image retrieval (TCIR), the combination of a reference image and modification text forms a query tuple, aiming to locate the most congruent target image within a dataset. The advantages of rich image semantic information and text flexibility are combined in this manner for more accurate retrieval. While traditional techniques often employ attention-driven compositors to craft a unified image-text representation, our paper introduces a compositor-free framework, CF-TCIR, which eschews the standard compositor. Compositor-based methods are designed to learn a joint representation of images and text, but they struggle to directly capture the correlations between attributes across the image and text modalities. Instead, we reformulate the retrieval process as a cross-modal interaction between a synthesized image feature and its corresponding text descriptor. This novel methodology offers advantages in terms of computational efficiency, scalability, and superior performance. To optimize the retrieval performance, we advocate a tiered retrieval mechanism, blending both coarse-grain and fine-grain paradigms. Moreover, to enrich the contextual relationship within the query tuple, we integrate a generative cross-modal alignment technique, ensuring synchronization of sequential attributes between image and text data.

pdf bib
MedCare: Advancing Medical LLMs through Decoupling Clinical Alignment and Knowledge Aggregation
Yusheng Liao | Shuyang Jiang | Zhe Chen | Yu Wang | Yanfeng Wang
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models (LLMs) have shown substantial progress in natural language understanding and generation, proving valuable especially in the medical field. Despite advancements, challenges persist due to the complexity and diversity inherent in medical tasks, which can be categorized as knowledge-intensive tasks and alignment-required tasks. Previous approaches either ignore the latter task or focus on a minority of tasks and hence lose generalization. To address these drawbacks, we propose a progressive fine-tuning pipeline. This pipeline employs a and a to encode diverse knowledge in the first stage and filter out detrimental information. In the second stage, we drop the to avoid the interference of suboptimal representation and leverage an additional alignment module optimized towards an orthogonal direction to the knowledge space to mitigate knowledge forgetting. Based on this two-stage paradigm, we proposed a Medical LLM through decoupling Clinical Alignment and Knowledge Aggregation (), which is designed to achieve promising performance on over 20 medical tasks, as well as results on specific medical alignment tasks. Various model sizes of (1.8B, 7B, 14B) all demonstrate significant improvements over existing models with similar model sizes. Our code and datasets are available at https://github.com/BlueZeros/MedCare.

pdf bib
HSDreport: Heart Sound Diagnosis with Echocardiography Reports
Zihan Zhao | Pingjie Wang | Liudan Zhao | Yuchen Yang | Ya Zhang | Kun Sun | Xin Sun | Xin Zhou | Yu Wang | Yanfeng Wang
Findings of the Association for Computational Linguistics: EMNLP 2024

Heart sound auscultation holds significant importance in the diagnosis of congenital heart disease. However, existing methods for Heart Sound Diagnosis (HSD) tasks are predominantly limited to a few fixed categories, framing the HSD task as a rigid classification problem that does not fully align with medical practice and offers only limited information to physicians. Besides, such methods do not utilize echocardiography reports, the gold standard in the diagnosis of related diseases. To tackle this challenge, we introduce HSDreport, a new benchmark for HSD, which mandates the direct utilization of heart sounds obtained from auscultation to predict echocardiography reports. This benchmark aims to merge the convenience of auscultation with the comprehensive nature of echocardiography reports. First, we collect a new dataset for this benchmark, comprising 2,275 heart sound samples along with their corresponding reports. Subsequently, we develop a knowledge-aware query-based transformer to handle this task. The intent is to leverage the capabilities of medically pre-trained models and the internal knowledge of large language models (LLMs) to address the task’s inherent complexity and variability, thereby enhancing the robustness and scientific validity of the method. Furthermore, our experimental results indicate that our method significantly outperforms traditional HSD approaches and existing multimodal LLMs in detecting key abnormalities in heart sounds.

pdf bib
CE-VDG: Counterfactual Entropy-based Bias Reduction for Video-grounded Dialogue Generation
Hongcheng Liu | Pingjie Wang | Zhiyuan Zhu | Yanfeng Wang | Yu Wang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The Video-Grounded Dialogue generation (VDG) is a challenging task requiring a comprehensive understanding of the multi-modal information to produce a pertinent response. However, VDG models may rely on dataset bias as a shortcut and fail to learn the multi-modal knowledge from both video and audio. Counterfactual reasoning is an effective method that can estimate and eliminate bias on some special aspects of classification tasks. However, conventional counterfactual reasoning cannot be applied to VDG tasks directly due to the BPE algorithm. In this paper, we reformulate the counterfactual reasoning from the information entropy perspective and extend it from the classification task to the generative task, which can effectively reduce the question-related bias in the auto-regressive generation task. We design CE-VDG to demonstrate the effectiveness in bias elimination of the reformulated counterfactual reasoning by using the proposed counterfactual entropy as an external loss. Extensive experiment results on two popular VDG datasets show the superiority of CE-VDG over the existing baseline method, demonstrating the effective debiasing capability in our model considering counterfactual entropy.

pdf bib
Post-decoder Biasing for End-to-End Speech Recognition of Multi-turn Medical Interview
Heyang Liu | Yanfeng Wang | Yu Wang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

End-to-end (E2E) approach is gradually replacing hybrid models for automatic speech recognition (ASR) tasks. However, the optimization of E2E models lacks an intuitive method for handling decoding shifts, especially in scenarios with a large number of domain-specific rare words that hold specific important meanings. Furthermore, the absence of knowledge-intensive speech datasets in academia has been a significant limiting factor, and the commonly used speech corpora exhibit significant disparities with realistic conversation. To address these challenges, we present Medical Interview (MED-IT), a multi-turn consultation speech dataset that contains a substantial number of knowledge-intensive named entities. We also explore methods to enhance the recognition performance of rare words for E2E models. We propose a novel approach, post-decoder biasing, which constructs a transform probability matrix based on the distribution of training transcriptions. This guides the model to prioritize recognizing words in the biasing list. In our experiments, for subsets of rare words appearing in the training speech between 10 and 20 times, and between 1 and 5 times, the proposed method achieves a relative improvement of 9.3% and 5.1%, respectively.

pdf bib
Pruning before Fine-tuning: A Retraining-free Compression Framework for Pre-trained Language Models
Pingjie Wang | Hongcheng Liu | Yanfeng Wang | Yu Wang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Structured pruning is an effective technique for compressing pre-trained language models (PLMs), reducing model size and improving inference speed for efficient deployment. However, most of existing pruning algorithms require retraining, leading to additional computational overhead. While some retraining-free approaches have been proposed for classification tasks, they still require a fully fine-tuned model for the task, and may cause catastrophic performance degradation on generative tasks. To address these challenges, we propose P-pruning (pre-pruning), an innovative task-specific compression framework. P-pruning prunes redundant modules of PLMs before fine-tuning, reducing the costs associated with fine-tuning. We also introduce a pruning algorithm for this framework, which includes two techniques: (1) module clustering, which clusters the outputs of all heads and neurons based on the task input; and (2) centroid selection, which identifies the most salient element in each cluster and prunes the others. We apply our method to BERT and GPT-2 and evaluate its effectiveness on GLUE, SQuAD, WikiText-2, WikiText-103, and PTB datasets. Experimental results demonstrate that our approach achieves higher performance in both classification and generative tasks, while also reducing the time required for fine-tuning.

2023

pdf bib
Self-Improvement of Non-autoregressive Model via Sequence-Level Distillation
Yusheng Liao | Shuyang Jiang | Yiqi Li | Yu Wang | Yanfeng Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Although Non-autoregressive Transformer (NAT) models have achieved great success in terms of fast inference speed, this speedup comes with a performance drop due to the inherent multi-modality problem of the NAT model. Previous works commonly alleviate this problem by replacing the target side of the raw data with distilled data generated by Autoregressive Transformer (AT) models. However, the multi-modality problem in the distilled data is still significant and thus limits further improvement of the NAT models. In this paper, we propose a method called Sequence-Level Self-Distillation (SLSD), which aims to generate distilled data by the NAT model itself, eliminating the need for additional teacher networks. Furthermore, SLSD can adapt to different NAT models without precise adjustments since the self-distilled data is generated from the same types of NAT models. We conduct extensive experiments on WMT14 ENDE and WMT16 ENRO and choose four classic NAT models as the backbones to validate the generality and effectiveness of SLSD. The results show that our approach can consistently improve all models on both raw data and distilled data without sacrificing the inference speed.

2022

pdf bib
FGraDA: A Dataset and Benchmark for Fine-Grained Domain Adaptation in Machine Translation
Wenhao Zhu | Shujian Huang | Tong Pu | Pingxuan Huang | Xu Zhang | Jian Yu | Wei Chen | Yanfeng Wang | Jiajun Chen
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Previous research for adapting a general neural machine translation (NMT) model into a specific domain usually neglects the diversity in translation within the same domain, which is a core problem for domain adaptation in real-world scenarios. One representative of such challenging scenarios is to deploy a translation system for a conference with a specific topic, e.g., global warming or coronavirus, where there are usually extremely less resources due to the limited schedule. To motivate wider investigation in such a scenario, we present a real-world fine-grained domain adaptation task in machine translation (FGraDA). The FGraDA dataset consists of Chinese-English translation task for four sub-domains of information technology: autonomous vehicles, AI education, real-time networks, and smart phone. Each sub-domain is equipped with a development set and test set for evaluation purposes. To be closer to reality, FGraDA does not employ any in-domain bilingual training data but provides bilingual dictionaries and wiki knowledge base, which can be easier obtained within a short time. We benchmark the fine-grained domain adaptation task and present in-depth analyses showing that there are still challenging problems to further improve the performance with heterogeneous resources.

2018

pdf bib
The Sogou-TIIC Speech Translation System for IWSLT 2018
Yuguang Wang | Liangliang Shi | Linyu Wei | Weifeng Zhu | Jinkun Chen | Zhichao Wang | Shixue Wen | Wei Chen | Yanfeng Wang | Jia Jia
Proceedings of the 15th International Conference on Spoken Language Translation

This paper describes our speech translation system for the IWSLT 2018 Speech Translation of lectures and TED talks from English to German task. The pipeline approach is employed in our work, which mainly includes the Automatic Speech Recognition (ASR) system, a post-processing module, and the Neural Machine Translation (NMT) system. Our ASR system is an ensemble system of Deep-CNN, BLSTM, TDNN, N-gram Language model with lattice rescoring. We report average results on tst2013, tst2014, tst2015. Our best combination system has an average WER of 6.73. The machine translation system is based on Google’s Transformer architecture. We achieved an improvement of 3.6 BLEU over baseline system by applying several techniques, such as cleaning parallel corpus, fine tuning of single model, ensemble models and re-scoring with additional features. Our final average result on speech translation is 31.02 BLEU.

2017

pdf bib
Sogou Neural Machine Translation Systems for WMT17
Yuguang Wang | Shanbo Cheng | Liyang Jiang | Jiajun Yang | Wei Chen | Muze Li | Lin Shi | Yanfeng Wang | Hongtao Yang
Proceedings of the Second Conference on Machine Translation