Yanran Li


2024

pdf bib
NarrativePlay: Interactive Narrative Understanding
Runcong Zhao | Wenjia Zhang | Jiazheng Li | Lixing Zhu | Yanran Li | Yulan He | Lin Gui
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

In this paper, we introduce NarrativePlay, a novel system that allows users to role-play a fictional character and interact with other characters in narratives in an immersive environment. We leverage Large Language Models (LLMs) to generate human-like responses, guided by personality traits extracted from narratives. The system incorporates auto-generated visual display of narrative settings, character portraits, and character speech, greatly enhancing the user experience. Our approach eschews predefined sandboxes, focusing instead on main storyline events from the perspective of a user-selected character. NarrativePlay has been evaluated on two types of narratives, detective and adventure stories, where users can either explore the world or increase affinity with other characters through conversations.

2023

pdf bib
Distinguishability Calibration to In-Context Learning
Hongjing Li | Hanqi Yan | Yanran Li | Li Qian | Yulan He | Lin Gui
Findings of the Association for Computational Linguistics: EACL 2023

Recent years have witnessed increasing interests in prompt-based learning in which models can be trained on only a few annotated instances, making them suitable in low-resource settings. It is even challenging in fine-grained classification as the pre-trained language models tend to generate similar output embedding which makes it difficult to discriminate for the prompt-based classifier. In this work, we alleviate this information diffusion issue by proposing a calibration method based on a transformation which rotates the embedding feature into a new metric space where we adapt the ratio of each dimension to a uniform distribution to guarantee the distinguishability of learned embeddings. Furthermore, we take the advantage of hyperbolic embedding to capture the relation between dimensions by a coarse-fine metric learning strategy to enhance interpretability. Extensive experiments on the three datasets under various settings demonstrate the effectiveness of our approach.

pdf bib
Multi-level Contrastive Learning for Script-based Character Understanding
Dawei Li | Hengyuan Zhang | Yanran Li | Shiping Yang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In this work, we tackle the scenario of understanding characters in scripts, which aims to learn the characters’ personalities and identities from their utterances. We begin by analyzing several challenges in this scenario, and then propose a multi-level contrastive learning framework to capture characters’ global information in a fine-grained manner. To validate the proposed framework, we conduct extensive experiments on three character understanding sub-tasks by comparing with strong pre-trained language models, including SpanBERT, Longformer, BigBird and ChatGPT-3.5. Experimental results demonstrate that our method improves the performances by a considerable margin. Through further in-depth analysis, we show the effectiveness of our method in addressing the challenges and provide more hints on the scenario of character understanding. We will open-source our work in this URL.

pdf bib
Assisting Language Learners: Automated Trans-Lingual Definition Generation via Contrastive Prompt Learning
Hengyuan Zhang | Dawei Li | Yanran Li | Chenming Shang | Chufan Shi | Yong Jiang
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023)

The standard definition generation task requires to automatically produce mono-lingual definitions (e.g., English definitions for English words), but ignores that the generated definitions may also consist of unfamiliar words for language learners. In this work, we propose a novel task of Trans-Lingual Definition Generation (TLDG), which aims to generate definitions in another language, i.e., the native speaker’s language. Initially, we explore the unsupervised manner of this task and build up a simple implementation of fine-tuning the multi-lingual machine translation model. Then, we develop two novel methods, Prompt Combination and Contrastive Prompt Learning, for further enhancing the quality of the generation. Our methods are evaluated against the baseline Pipeline method in both rich- and low-resource settings, and we empirically establish its superiority in generating higher-quality trans-lingual definitions.

2022

pdf bib
MISC: A Mixed Strategy-Aware Model integrating COMET for Emotional Support Conversation
Quan Tu | Yanran Li | Jianwei Cui | Bin Wang | Ji-Rong Wen | Rui Yan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Applying existing methods to emotional support conversation—which provides valuable assistance to people who are in need—has two major limitations: (a) they generally employ a conversation-level emotion label, which is too coarse-grained to capture user’s instant mental state; (b) most of them focus on expressing empathy in the response(s) rather than gradually reducing user’s distress. To address the problems, we propose a novel model MISC, which firstly infers the user’s fine-grained emotional status, and then responds skillfully using a mixture of strategy. Experimental results on the benchmark dataset demonstrate the effectiveness of our method and reveal the benefits of fine-grained emotion understanding as well as mixed-up strategy modeling.

pdf bib
C3KG: A Chinese Commonsense Conversation Knowledge Graph
Dawei Li | Yanran Li | Jiayi Zhang | Ke Li | Chen Wei | Jianwei Cui | Bin Wang
Findings of the Association for Computational Linguistics: ACL 2022

Existing commonsense knowledge bases often organize tuples in an isolated manner, which is deficient for commonsense conversational models to plan the next steps. To fill the gap, we curate a large-scale multi-turn human-written conversation corpus, and create the first Chinese commonsense conversation knowledge graph which incorporates both social commonsense knowledge and dialog flow information. To show the potential of our graph, we develop a graph-conversation matching approach, and benchmark two graph-grounded conversational tasks. All the resources in this work will be released to foster future research.

pdf bib
Fine-grained Contrastive Learning for Definition Generation
Hengyuan Zhang | Dawei Li | Shiping Yang | Yanran Li
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recently, pre-trained transformer-based models have achieved great success in the task of definition generation (DG). However, previous encoder-decoder models lack effective representation learning to contain full semantic components of the given word, which leads to generating under-specific definitions. To address this problem, we propose a novel contrastive learning method, encouraging the model to capture more detailed semantic representations from the definition sequence encoding. According to both automatic and manual evaluation, the experimental results on three mainstream benchmarks demonstrate that the proposed method could generate more specific and high-quality definitions compared with several state-of-the-art models.

2020

pdf bib
Focus-Constrained Attention Mechanism for CVAE-based Response Generation
Zhi Cui | Yanran Li | Jiayi Zhang | Jianwei Cui | Chen Wei | Bin Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

To model diverse responses for a given post, one promising way is to introduce a latent variable into Seq2Seq models. The latent variable is supposed to capture the discourse-level information and encourage the informativeness of target responses. However, such discourse-level information is often too coarse for the decoder to be utilized. To tackle it, our idea is to transform the coarse-grained discourse-level information into fine-grained word-level information. Specifically, we firstly measure the semantic concentration of corresponding target response on the post words by introducing a fine-grained focus signal. Then, we propose a focus-constrained attention mechanism to take full advantage of focus in well aligning the input to the target response. The experimental results demonstrate that by exploiting the fine-grained signal, our model can generate more diverse and informative responses compared with several state-of-the-art models.

2017

pdf bib
DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset
Yanran Li | Hui Su | Xiaoyu Shen | Wenjie Li | Ziqiang Cao | Shuzi Niu
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. The dataset is available on http://yanran.li/dailydialog

pdf bib
Determining Gains Acquired from Word Embedding Quantitatively Using Discrete Distribution Clustering
Jianbo Ye | Yanran Li | Zhaohui Wu | James Z. Wang | Wenjie Li | Jia Li
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Word embeddings have become widely-used in document analysis. While a large number of models for mapping words to vector spaces have been developed, it remains undetermined how much net gain can be achieved over traditional approaches based on bag-of-words. In this paper, we propose a new document clustering approach by combining any word embedding with a state-of-the-art algorithm for clustering empirical distributions. By using the Wasserstein distance between distributions, the word-to-word semantic relationship is taken into account in a principled way. The new clustering method is easy to use and consistently outperforms other methods on a variety of data sets. More importantly, the method provides an effective framework for determining when and how much word embeddings contribute to document analysis. Experimental results with multiple embedding models are reported.

pdf bib
A Conditional Variational Framework for Dialog Generation
Xiaoyu Shen | Hui Su | Yanran Li | Wenjie Li | Shuzi Niu | Yang Zhao | Akiko Aizawa | Guoping Long
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Deep latent variable models have been shown to facilitate the response generation for open-domain dialog systems. However, these latent variables are highly randomized, leading to uncontrollable generated responses. In this paper, we propose a framework allowing conditional response generation based on specific attributes. These attributes can be either manually assigned or automatically detected. Moreover, the dialog states for both speakers are modeled separately in order to reflect personal features. We validate this framework on two different scenarios, where the attribute refers to genericness and sentiment states respectively. The experiment result testified the potential of our model, where meaningful responses can be generated in accordance with the specified attributes.

2016

pdf bib
AttSum: Joint Learning of Focusing and Summarization with Neural Attention
Ziqiang Cao | Wenjie Li | Sujian Li | Furu Wei | Yanran Li
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Query relevance ranking and sentence saliency ranking are the two main tasks in extractive query-focused summarization. Previous supervised summarization systems often perform the two tasks in isolation. However, since reference summaries are the trade-off between relevance and saliency, using them as supervision, neither of the two rankers could be trained well. This paper proposes a novel summarization system called AttSum, which tackles the two tasks jointly. It automatically learns distributed representations for sentences as well as the document cluster. Meanwhile, it applies the attention mechanism to simulate the attentive reading of human behavior when a query is given. Extensive experiments are conducted on DUC query-focused summarization benchmark datasets. Without using any hand-crafted features, AttSum achieves competitive performance. We also observe that the sentences recognized to focus on the query indeed meet the query need.

2015

pdf bib
Component-Enhanced Chinese Character Embeddings
Yanran Li | Wenjie Li | Fei Sun | Sujian Li
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
A Hierarchical Knowledge Representation for Expert Finding on Social Media
Yanran Li | Wenjie Li | Sujian Li
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

2014

pdf bib
Query-focused Multi-Document Summarization: Combining a Topic Model with Graph-based Semi-supervised Learning
Yanran Li | Sujian Li
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers