Recent studies have explored the use of Large Language Models (LLMs) with Retrieval Augmented Generation (RAG) for Knowledge Graph Question Answering (KGQA). They typically require rewriting retrieved subgraphs into natural language formats comprehensible to LLMs. However, when tackling complex questions, the knowledge rewritten by existing methods may include irrelevant information, omit crucial details, or fail to align with the question’s semantics. To address them, we propose a novel rewriting method CoTKR, Chain- of-Thought Enhanced Knowledge Rewriting, for generating reasoning traces and corresponding knowledge in an interleaved manner, thereby mitigating the limitations of single-step knowledge rewriting. Additionally, to bridge the preference gap between the knowledge rewriter and the question answering (QA) model, we propose a training strategy PAQAF, Preference Alignment from Question Answering Feedback, for leveraging feedback from the QA model to further optimize the knowledge rewriter. We conduct experiments using various LLMs across several KGQA benchmarks. Experimental results demonstrate that, compared with previous knowledge rewriting methods, CoTKR generates the most beneficial knowledge representation for QA models, which significantly improves the performance of LLMs in KGQA.
In extremely low resource relation identification scenario, small language models (SLMs) incline to overfit, which significantly diminishes their accuracy. Recently, large language models (LLMs) are gradually applied to classification tasks with converting original objective into the generation task via in-context learning. However, abundance of the classifier categories poses challenges in selecting demonstrations. Moreover, the mapping between category labels and textual descriptions requires expensive expert knowledge, thereby constraining the efficacy of in-context learning for LLMs. We uphold that SLM is optimal for handling classification tasks, and its shortcomings in the low resource setting can be mitigated by leveraging LLM. Hence, we propose a co-evolution strategy on SLM & LLM for relation identification. Specifically, LLM provides essential background knowledge to assist training process of the SLM classifier, while evaluation metrics from the classifier, in turn, offer valuable insights to refine the generation prompts of the LLM. We conduct experiments on several datasets which demonstrates preponderance of the proposed model.
Automatic medical entity and relation extraction is essential for daily electronic medical record (EMR) analysis, and has attracted a lot of academic attention. Tremendous progress has been made in recent years. However, medical terms are difficult to understand, and their relations are more complicated than general ones. Based on this situation, domain knowledge gives better background and contexts for medical terms. Despite the benefits of medical domain knowledge, the utilization way of it for joint entity and relation extraction is inadequate. To foster this line of research, in this work, we propose to leverage the medical knowledge graph for extracting entities and relations for Chinese Medical Texts in a collective way. Specifically, we propose to construct a high-order heterogeneous graph based on medical knowledge graph, which is linked to the entity mentions in the text. In this way, neighbors from the high-order heterogeneous graph can pass the message to each other for better global context representations. Our experiments on real Chinese Medical Texts show that our method is more effective than state-of-the-art methods.
Developing semi-supervised task-oriented dialog (TOD) systems by leveraging unlabeled dialog data has attracted increasing interests. For semi-supervised learning of latent state TOD models, variational learning is often used, but suffers from the annoying high-variance of the gradients propagated through discrete latent variables and the drawback of indirectly optimizing the target log-likelihood. Recently, an alternative algorithm, called joint stochastic approximation (JSA), has emerged for learning discrete latent variable models with impressive performances. In this paper, we propose to apply JSA to semi-supervised learning of the latent state TOD models, which is referred to as JSA-TOD. To our knowledge, JSA-TOD represents the first work in developing JSA based semi-supervised learning of discrete latent variable conditional models for such long sequential generation problems like in TOD systems. Extensive experiments show that JSA-TOD significantly outperforms its variational learning counterpart. Remarkably, semi-supervised JSA-TOD using 20% labels performs close to the full-supervised baseline on MultiWOZ2.1.
Dialogue modeling problems severely limit the real-world deployment of neural conversational models and building a human-like dialogue agent is an extremely challenging task. Recently, data-driven models become more and more prevalent which need a huge amount of conversation data. In this paper, we release around 100,000 dialogue, which come from real-world dialogue transcripts between real users and customer-service staffs. We call this dataset as CMCC (China Mobile Customer Care) dataset, which differs from existing dialogue datasets in both size and nature significantly. The dataset reflects several characteristics of human-human conversations, e.g., task-driven, care-oriented, and long-term dependency among the context. It also covers various dialogue types including task-oriented, chitchat and conversational recommendation in real-world scenarios. To our knowledge, CMCC is the largest real human-human spoken dialogue dataset and has dozens of times the data scale of others, which shall significantly promote the training and evaluation of dialogue modeling methods. The results of extensive experiments indicate that CMCC is challenging and needs further effort. We hope that this resource will allow for more effective models across various dialogue sub-problems to be built in the future.
Dialogue generation is a challenging problem because it not only requires us to model the context in a conversation but also to exploit it to generate a coherent and fluent utterance. This paper, aiming for a specific topic of this field, proposes an adversarial training based framework for utterance-level dialogue generation. Technically, we train an encoder-decoder generator simultaneously with a discriminative classifier that make the utterance approximate to the state-aware inputs. Experiments on MultiWoZ 2.0 and MultiWoZ 2.1 datasets show that our method achieves advanced improvements on both automatic and human evaluations, and on the effectiveness of our framework facing low-resource. We further explore the effect of fine-grained augmentations for downstream dialogue state tracking (DST) tasks. Experimental results demonstrate the high-quality data generated by our proposed framework improves the performance over state-of-the-art models.
Recently, there have merged a class of taskoriented dialogue (TOD) datasets collected through Wizard-of-Oz simulated games. However, the Wizard-of-Oz data are in fact simulated data and thus are fundamentally different from real-life conversations, which are more noisy and casual. Recently, the SereTOD challenge is organized and releases the MobileCS dataset, which consists of real-world dialog transcripts between real users and customerservice staffs from China Mobile. Based on the MobileCS dataset, the SereTOD challenge has two tasks, not only evaluating the construction of the dialogue system itself, but also examining information extraction from dialog transcripts, which is crucial for building the knowledge base for TOD. This paper mainly presents a baseline study of the two tasks with the MobileCS dataset. We introduce how the two baselines are constructed, the problems encountered, and the results. We anticipate that the baselines can facilitate exciting future research to build human-robot dialogue systems for real-life tasks.
Building user simulators (USs) for reinforcement learning (RL) of task-oriented dialog systems (DSs) has gained more and more attention, which, however, still faces several fundamental challenges. First, it is unclear whether we can leverage pretrained language models to design, for example, GPT-2 based USs, to catch up and interact with the recently advanced GPT- 2 based DSs. Second, an important ingredient in a US is that the user goal can be effectively incorporated and tracked; but how to flexibly integrate goal state tracking and develop an end-to-end trainable US for multi-domains has remained to be a challenge. In this work, we propose a generative user simulator (GUS) with GPT-2 based architecture and goal state tracking towards addressing the above two challenges. Extensive experiments are conducted on MultiWOZ2.1. Different DSs are trained via RL with GUS, the classic agenda-based user simulator (ABUS) and other ablation simulators respectively, and are compared for crossmodel evaluation, corpus-based evaluation and human evaluation. The GUS achieves superior results in all three evaluation tasks.
Traditional intent classification models are based on a pre-defined intent set and only recognize limited in-domain (IND) intent classes. But users may input out-of-domain (OOD) queries in a practical dialogue system. Such OOD queries can provide directions for future improvement. In this paper, we define a new task, Generalized Intent Discovery (GID), which aims to extend an IND intent classifier to an open-world intent set including IND and OOD intents. We hope to simultaneously classify a set of labeled IND intent classes while discovering and recognizing new unlabeled OOD types incrementally. We construct three public datasets for different application scenarios and propose two kinds of frameworks, pipeline-based and end-to-end for future work. Further, we conduct exhaustive experiments and qualitative analysis to comprehend key challenges and provide new guidance for future GID research.
Most existing slot filling models tend to memorize inherent patterns of entities and corresponding contexts from training data. However, these models can lead to system failure or undesirable outputs when being exposed to spoken language perturbation or variation in practice. We propose a perturbed semantic structure awareness transferring method for training perturbation-robust slot filling models. Specifically, we introduce two MLM-based training strategies to respectively learn contextual semantic structure and word distribution from unsupervised language perturbation corpus. Then, we transfer semantic knowledge learned from upstream training procedure into the original samples and filter generated data by consistency processing. These procedures aims to enhance the robustness of slot filling models. Experimental results show that our method consistently outperforms the previous basic methods and gains strong generalization while preventing the model from memorizing inherent patterns of entities and contexts.
A Dialogue State Tracker (DST) is a core component of modular task-oriented dialogue systems. Tremendous research progress has been made in past ten years to improve performance of DSTs especially on benchmark datasets. However, their generalization to novel and realistic scenarios beyond the held-out conversations is limited. In this paper, we design experimental studies to answer: 1) How does the distribution of dialogue data affect the performance of DSTs? 2) What are effective ways to probe counterfactual matter for DSTs? Our findings are: the performance variance of generative DSTs is not only due to the model structure itself, but can be attributed to the distribution of cross-domain values. Evaluating iconic generative DST models on MultiWOZ dataset with counterfactuals results in a significant performance drop of up to 34.64% (from 50.91% to 16.27%) in absolute joint goal accuracy. It is believed that our experimental results can guide the future work to better understand the intrinsic core of DST and rethink the suitable way for specific tasks given the application property.
Multi-label text classification is a challenging task because it requires capturing label dependencies. It becomes even more challenging when class distribution is long-tailed. Resampling and re-weighting are common approaches used for addressing the class imbalance problem, however, they are not effective when there is label dependency besides class imbalance because they result in oversampling of common labels. Here, we introduce the application of balancing loss functions for multi-label text classification. We perform experiments on a general domain dataset with 90 labels (Reuters-21578) and a domain-specific dataset from PubMed with 18211 labels. We find that a distribution-balanced loss function, which inherently addresses both the class imbalance and label linkage problems, outperforms commonly used loss functions. Distribution balancing methods have been successfully used in the image recognition field. Here, we show their effectiveness in natural language processing. Source code is available at https://github.com/blessu/BalancedLossNLP.
A Dialogue State Tracker (DST) is a core component of a modular task-oriented dialogue system. Tremendous progress has been made in recent years. However, the major challenges remain. The state-of-the-art accuracy for DST is below 50% for a multi-domain dialogue task. A learnable DST for any new domain requires a large amount of labeled in-domain data and training from scratch. In this paper, we propose a Meta-Reinforced Multi-Domain State Generator (MERET). Our first contribution is to improve the DST accuracy. We enhance a neural model based DST generator with a reward manager, which is built on policy gradient reinforcement learning (RL) to fine-tune the generator. With this change, we are able to improve the joint accuracy of DST from 48.79% to 50.91% on the MultiWOZ corpus. Second, we explore to train a DST meta-learning model with a few domains as source domains and a new domain as target domain. We apply the model-agnostic meta-learning algorithm (MAML) to DST and the obtained meta-learning model is used for new domain adaptation. Our experimental results show this solution is able to outperform the traditional training approach with extremely less training data in target domain.
In this paper, we propose a meta-learning based semi-supervised explicit dialogue state tracker (SEDST) for neural dialogue generation, denoted as MEDST. Our main motivation is to further bridge the chasm between the need for high accuracy dialogue state tracker and the common reality that only scarce annotated data is available for most real-life dialogue tasks. Specifically, MEDST has two core steps: meta-training with adequate unlabelled data in an automatic way and meta-testing with a few annotated data by supervised learning. In particular, we enhance SEDST via entropy regularization, and investigate semi-supervised learning frameworks based on model-agnostic meta-learning (MAML) that are able to reduce the amount of required intermediate state labelling. We find that by leveraging un-annotated data in meta-way instead, the amount of dialogue state annotations can be reduced below 10% while maintaining equivalent system performance. Experimental results show MEDST outperforms SEDST substantially by 18.7% joint goal accuracy and 14.3% entity match rate on the KVRET corpus with 2% labelled data in semi-supervision.