2024
pdf
bib
abs
AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models
Wanjun Zhong
|
Ruixiang Cui
|
Yiduo Guo
|
Yaobo Liang
|
Shuai Lu
|
Yanlin Wang
|
Amin Saied
|
Weizhu Chen
|
Nan Duan
Findings of the Association for Computational Linguistics: NAACL 2024
Assessing foundation models’ abilities for human-level tasks is crucial for Artificial General Intelligence (AGI) development.Traditional benchmarks, which rely on artificial datasets, may not accurately represent these capabilities. In this paper, we introduce AGIEval, a novel bilingual benchmark designed to assess foundation models in the context of human-centric standardized exams, such as college entrance exams, law school admission tests, math competitions, and lawyer qualification tests. We evaluate several state-of-the-art foundation models on our benchmark. Impressively, we show that GPT-4 exceeds the average human performance in SAT, LSAT, and math contests, with 95% accuracy on SAT Math and 92.5% on the Chinese college entrance English exam. This demonstrates the exceptional performance of contemporary foundation models. In contrast, we also find that GPT-4 is less proficient in tasks requiring complex reasoning or specific domain knowledge. Our comprehensive analyses of model capabilities (understanding, knowledge, reasoning, and calculation) reveal their strengths and limitations, providing valuable insights into future directions for enhancing general capabilities. By concentrating on tasks pertinent to human cognition and decision-making, our benchmark delivers a meaningful and robust evaluation of foundation models’ performance in real-world scenarios.
pdf
bib
abs
PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task Completion
Yiduo Guo
|
Zekai Zhang
|
Yaobo Liang
|
Dongyan Zhao
|
Nan Duan
Findings of the Association for Computational Linguistics: ACL 2024
Recent evaluations of Large Language Models (LLMs) have centered around testing their zero-shot/few-shot capabilities for basic natural language tasks and their ability to translate instructions into tool APIs. However, the evaluation of LLMs utilizing complex tools to finish multi-turn, multi-modal instructions in a complex multi-modal environment has not been investigated. To address this gap, we introduce the PowerPoint Task Completion (PPTC) benchmark to assess LLMs’ ability to create and edit PPT files based on user instructions. It contains 279 multi-turn sessions covering diverse topics and hundreds of instructions involving multi-modal operations. We also propose the PPTX-Match Evaluation System that evaluates if LLMs finish the instruction based on the prediction file rather than the label API sequence, thus it supports various LLM-generated API sequences. We measure 3 closed LLMs and 6 open-source LLMs. The results show that GPT-4 outperforms other LLMs with 75.1% accuracy in single-turn dialogue testing but faces challenges in completing entire sessions, achieving just 6% session accuracy. We find three main error causes in our benchmark: error accumulation in the multi-turn session, long PPT template processing, and multi-modality perception. These pose great challenges for future LLM and agent systems .
pdf
bib
abs
Large Language Models Can Learn Representation in Natural Language
Yiduo Guo
|
Yaobo Liang
|
Dongyan Zhao
|
Nan Duan
Findings of the Association for Computational Linguistics: ACL 2024
One major challenge for Large Language Models (LLMs) is completing complex tasks involving multiple entities, such as tool APIs. To tackle this, one approach is to retrieve relevant entities to enhance LLMs in task completion. A crucial issue here is obtaining accurate natural language representations for each entity to aid in retriever precision. In this paper, we propose the Natural Language Representation Optimization Problem, which aims to refine entity descriptions for improved retrieval and LLM utilization. We introduce the Learning to Represent with Natural Language method, which utilizes LLMs to optimize entity representations consisting of text patterns based on environmental feedback. We iteratively prompt LLMs to enhance or adjust patterns based on entity samples and evaluate their effectiveness through environmental feedback. Our method successfully learns human-understandable representations for classification tasks (e.g., instructions and documents) and API call tasks (e.g., APIbench and Virtual Home), significantly improving GPT-4’s task performance.
2023
pdf
bib
abs
Analyzing and Reducing the Performance Gap in Cross-Lingual Transfer with Fine-tuning Slow and Fast
Yiduo Guo
|
Yaobo Liang
|
Dongyan Zhao
|
Bing Liu
|
Nan Duan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Existing research has shown that a multilingual pre-trained language model fine-tuned with one (source) language also performs well on downstream tasks for non-source languages, even though no fine-tuning is done on these languages. However, there is a clear gap between the performance of the source language and that of the non-source languages. This paper analyzes the fine-tuning process, discovers when the performance gap changes and identifies which network weights affect the overall performance most. Additionally, the paper seeks to answer to what extent the gap can be reduced by reducing forgetting. Based on the analysis results, a method named Fine-tuning slow and fast with four training policies is proposed to address these issues. Experimental results show the proposed method outperforms baselines by a clear margin.
pdf
bib
abs
Class-Incremental Learning based on Label Generation
Yijia Shao
|
Yiduo Guo
|
Dongyan Zhao
|
Bing Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Despite the great success of pre-trained language models, it is still a challenge to use these models for continual learning, especially for the class-incremental learning (CIL) setting due to catastrophic forgetting (CF). This paper reports our finding that if we formulate CIL as a continual label generation problem, CF is drastically reduced and the generalizable representations of pre-trained models can be better retained. We thus propose a new CIL method (VAG) that also leverages the sparsity of vocabulary to focus the generation and creates pseudo-replay samples by using label semantics. Experimental results show that VAG outperforms baselines by a large margin.