Despite significant advancements in natural language generation, controlling language models to produce texts with desired attributes remains a formidable challenge. In this work, we introduce RSA-Control, a training-free controllable text generation framework grounded in pragmatics. RSA-Control directs the generation process by recursively reasoning between imaginary speakers and listeners, enhancing the likelihood that target attributes are correctly interpreted by listeners amidst distractors. Additionally, we introduce a self-adjustable rationality parameter, which allows for automatic adjustment of control strength based on context. Our experiments, conducted with two task types and two types of language models, demonstrate that RSA-Control achieves strong attribute control while maintaining language fluency and content consistency. Our code is available at https://github.com/Ewanwong/RSA-Control.
Decoding methods play an indispensable role in converting language models from next-token predictors into practical task solvers. Prior research on decoding methods, primarily focusing on task-specific models, may not extend to the current era of general-purpose large language models (LLMs). Moreover, the recent influx of decoding strategies has further complicated this landscape. This paper provides a comprehensive and multifaceted analysis of various decoding methods within the context of LLMs, evaluating their performance, robustness to hyperparameter changes, and decoding speeds across a wide range of tasks, models, and deployment environments. Our findings reveal that decoding method performance is notably task-dependent and influenced by factors such as alignment, model size, and quantization. Intriguingly, sensitivity analysis exposes that certain methods achieve superior performance at the cost of extensive hyperparameter tuning, highlighting the trade-off between attaining optimal results and the practicality of implementation in varying contexts.
Text2SQL is a task that translates natural language into SQL statements. Context-dependent Text2SQL offers a more natural database interaction by simulating dialogues between users and databases, with CoSQL and SparC as representative datasets. Yet, these datasets struggle to accurately replicate real-world situations. To address this, we introduce MultiSQL, which extends them in three key aspects: (1) Diverse SQL Operations. We incorporate diverse SQL types such as Create, Update, and Insert to broaden the scope of SQL operations. (2) Schema-Integrated Context. We integrated query context with database schema dependencies to better depict database complexity. (3) Extended Dialogues. We expand dialogue length to better simulate long conversations and complex interactions. This multi-type, schema-integrated, context-dependent Text2SQL dataset comprises nearly 800 dialogue groups and over 9,000 interaction turns across 166 complex databases, offering a better benchmark for interactive user-database dialogue.Addressing MultiSQL’s challenges, we refined evaluation metrics to better capture diverse SQL types and schema dependencies. We designed a prompt framework that leverages historical data and self-refinement to accurately capture the dependency between text queries and database structures. Experiments with GPT-3.5, GPT-4, and LLaMA2-7B show both the effectiveness of our strategies and the challenges of MultiSQL. The datasets is available at https://github.com/grandchicken/MultiSQL.
Pre-trained language models have shown impressive abilities of understanding and generating natural languages. However, they typically inherit undesired human-like bias and stereotypes from training data, which raises concerns about putting these models into use in real-world scenarios. Although prior research has proposed to reduce bias using different fairness objectives, they usually fail to capture different representations of bias and, therefore, struggle with fully debiasing models. In this work, we introduce a multi-objective probability alignment approach to overcome current challenges by incorporating multiple debiasing losses to locate and penalize bias in different forms. Compared to existing methods, our proposed method can more effectively and comprehensively reduce stereotypical bias, and maintains the language ability of pre-trained models at the same time. Besides, we adopt prefix-tuning to optimize fairness objectives, and results show that it can achieve better bias removal than full fine-tuning while requiring much fewer computational resources. Our code and data are available at https://github.com/Ewanwong/debias_NLG.
Scientific news reports serve as a bridge, adeptly translating complex research articles into reports that resonate with the broader public. The automated generation of such narratives enhances the accessibility of scholarly insights. In this paper, we present a new corpus to facilitate this paradigm development. Our corpus comprises a parallel compilation of academic publications and their corresponding scientific news reports across nine disciplines. To demonstrate the utility and reliability of our dataset, we conduct an extensive analysis, highlighting the divergences in readability and brevity between scientific news narratives and academic manuscripts. We benchmark our dataset employing state-of-the-art text generation models. The evaluation process involves both automatic and human evaluation, which lays the groundwork for future explorations into the automated generation of scientific news reports. The dataset and code related to this work are available at https://dongqi.me/projects/SciNews.
Instruction tuning effectively optimizes Large Language Models (LLMs) for downstream tasks. Due to the changing environment in real-life applications, LLMs necessitate continual task-specific adaptation without catastrophic forgetting. Considering the heavy computational cost, replay-based Continual Learning (CL) methods are the simplest and most widely used for LLMs to address the forgetting issue. However, traditional replay-based methods do not fully utilize instructions to customize the replay strategy. In this work, we propose a novel paradigm called Instruction-based Continual Learning (InsCL). InsCL dynamically replays previous data based on task similarity, calculated by Wasserstein Distance with instructions. Moreover, we further introduce an Instruction Information Metric (InsInfo) to quantify the complexity and diversity of instructions. According to InsInfo, InsCL guides the replay process more inclined to high-quality data. We conduct extensive experiments over 16 tasks with different training orders, observing consistent performance improvements of InsCL. When all tasks have been trained, InsCL achieves performance gains of 3.0 Relative Gain compared with Random Replay, and 27.96 Relative Gain compared with No Replay.
For text summarization, the role of discourse structure is pivotal in discerning the core content of a text. Regrettably, prior studies on incorporating Rhetorical Structure Theory (RST) into transformer-based summarization models only consider the nuclearity annotation, thereby overlooking the variety of discourse relation types. This paper introduces the ‘RSTformer’, a novel summarization model that comprehensively incorporates both the types and uncertainty of rhetorical relations. Our RST-attention mechanism, rooted in document-level rhetorical structure, is an extension of the recently devised Longformer framework. Through rigorous evaluation, the model proposed herein exhibits significant superiority over state-of-the-art models, as evidenced by its notable performance on several automatic metrics and human evaluation.
Controlling styles in neural machine translation (NMT) has attracted wide attention, as it is crucial for enhancing user experience. Earlier studies on this topic typically concentrate on regulating the level of formality and achieve some progress in this area. However, they still encounter two major challenges. The first is the difficulty in style evaluation. The style comprises various aspects such as lexis, syntax, and others that provide abundant information. Nevertheless, only formality has been thoroughly investigated. The second challenge involves excessive dependence on incremental adjustments, particularly when new styles are necessary. To address both challenges, this paper presents a new benchmark and approach. A multiway stylized machine translation (MSMT) benchmark is introduced, incorporating diverse categories of styles across four linguistic domains. Then, we propose a method named style activation prompt (StyleAP) by retrieving prompts from stylized monolingual corpus, which does not require extra fine-tuning. Experiments show that StyleAP could effectively control the style of translation and achieve remarkable performance.
Transformer-based pre-trained models, such as BERT, have shown extraordinary success in achieving state-of-the-art results in many natural language processing applications. However, deploying these models can be prohibitively costly, as the standard self-attention mechanism of the Transformer suffers from quadratic computational cost in the input sequence length. To confront this, we propose FCA, a fine- and coarse-granularity hybrid self-attention that reduces the computation cost through progressively shortening the computational sequence length in self-attention. Specifically, FCA conducts an attention-based scoring strategy to determine the informativeness of tokens at each layer. Then, the informative tokens serve as the fine-granularity computing units in self-attention and the uninformative tokens are replaced with one or several clusters as the coarse-granularity computing units in self-attention. Experiments on the standard GLUE benchmark show that BERT with FCA achieves 2x reduction in FLOPs over original BERT with <1% loss in accuracy. We show that FCA offers a significantly better trade-off between accuracy and FLOPs compared to prior methods.
Conventional autoregressive left-to-right (L2R) sequence generation faces two issues during decoding: limited to unidirectional target sequence modeling, and constrained on strong local dependencies.To address the aforementioned problem, we propose P3LM, a probabilistically permuted prophet language model, which strengthens the modeling of bidirectional information and long token dependencies for sequence generation.Specifically, P3LM learns to generate tokens in permuted order upon an order-aware transformer decoder, as well as to generate the corresponding future N tokens with a multi-stream attention mechanism.Extensive experiments are conducted on the GLGE benchmark, which includes four datasets for summarization, two for question generation, one for conversational question answering, and one for dialog response generation, where P3LM achieves state-of-the-art results compared with strong publicly available generative pre-training methods.
Machine reading comprehension (MRC) that requires discrete reasoning involving symbolic operations, e.g., addition, sorting, and counting, is a challenging task. According to this nature, semantic parsing-based methods predict interpretable but complex logical forms. However, logical form generation is nontrivial and even a little perturbation in a logical form will lead to wrong answers. To alleviate this issue, multi-predictor -based methods are proposed to directly predict different types of answers and achieve improvements. However, they ignore the utilization of symbolic operations and encounter a lack of reasoning ability and interpretability. To inherit the advantages of these two types of methods, we propose OPERA, an operation-pivoted discrete reasoning framework, where lightweight symbolic operations (compared with logical forms) as neural modules are utilized to facilitate the reasoning ability and interpretability. Specifically, operations are first selected and then softly executed to simulate the answer reasoning procedure. Extensive experiments on both DROP and RACENum datasets show the reasoning ability of OPERA. Moreover, further analysis verifies its interpretability.
Dialogue state tracking (DST) aims to predict the current dialogue state given the dialogue history. Existing methods generally exploit the utterances of all dialogue turns to assign value for each slot. This could lead to suboptimal results due to the information introduced from irrelevant utterances in the dialogue history, which may be useless and can even cause confusion. To address this problem, we propose LUNA, a SLot-TUrN Alignment enhanced approach. It first explicitly aligns each slot with its most relevant utterance, then further predicts the corresponding value based on this aligned utterance instead of all dialogue utterances. Furthermore, we design a slot ranking auxiliary task to learn the temporal correlation among slots which could facilitate the alignment. Comprehensive experiments are conducted on three multi-domain task-oriented dialogue datasets, MultiWOZ 2.0, MultiWOZ 2.1, and MultiWOZ 2.2. The results show that LUNA achieves new state-of-the-art results on these datasets.
Transformer-based pre-trained models, such as BERT, have achieved remarkable results on machine reading comprehension. However, due to the constraint of encoding length (e.g., 512 WordPiece tokens), a long document is usually split into multiple chunks that are independently read. It results in the reading field being limited to individual chunks without information collaboration for long document machine reading comprehension. To address this problem, we propose RoR, a read-over-read method, which expands the reading field from chunk to document. Specifically, RoR includes a chunk reader and a document reader. The former first predicts a set of regional answers for each chunk, which are then compacted into a highly-condensed version of the original document, guaranteeing to be encoded once. The latter further predicts the global answers from this condensed document. Eventually, a voting strategy is utilized to aggregate and rerank the regional and global answers for final prediction. Extensive experiments on two benchmarks QuAC and TriviaQA demonstrate the effectiveness of RoR for long document reading. Notably, RoR ranks 1st place on the QuAC leaderboard (https://quac.ai/) at the time of submission (May 17th, 2021).
Keyphrases, that concisely summarize the high-level topics discussed in a document, can be categorized into present keyphrase which explicitly appears in the source text and absent keyphrase which does not match any contiguous subsequence but is highly semantically related to the source. Most existing keyphrase generation approaches synchronously generate present and absent keyphrases without explicitly distinguishing these two categories. In this paper, a Select-Guide-Generate (SGG) approach is proposed to deal with present and absent keyphrases generation separately with different mechanisms. Specifically, SGG is a hierarchical neural network which consists of a pointing-based selector at low layer concentrated on present keyphrase generation, a selection-guided generator at high layer dedicated to absent keyphrase generation, and a guider in the middle to transfer information from selector to generator. Experimental results on four keyphrase generation benchmarks demonstrate the effectiveness of our model, which significantly outperforms the strong baselines for both present and absent keyphrases generation. Furthermore, we extend SGG to a title generation task which indicates its extensibility in natural language generation tasks.