In this paper, we present an innovative process-oriented math process reward model called Math-shepherd, which assigns a reward score to each step of math problem solutions. The training of Math-shepherd is achieved using automatically constructed process-wise supervision data, breaking the bottleneck of heavy reliance on manual annotation in existing work. We explore the effectiveness of Math-shepherd in two scenarios: 1) Verification: Math-shepherd is utilized for reranking multiple outputs generated by Large Language Models (LLMs); 2) Reinforcement Learning (RL): Math-shepherd is employed to reinforce LLMs.With Math-shepherd, a series of open-source LLMs demonstrates exceptional performance. For instance, process RL with Math-shepherd significantly enhances Mistral-7B (77.9%→84.1% on GSM8K and 28.6%→33.0% on MATH).The accuracy can be further improved to 89.1% and 43.5% on two benchmarks with verification of Math-shepherd.We believe that automatic process supervision holds significant potential for the future evolution of LLMs.
When using language models (LMs) to solve complex problems, humans might struggle to understand the LM-generated solutions and repair the flawed ones. To assist humans in repairing them, we propose to automatically decompose complex solutions into multiple simpler pieces that correspond to specific subtasks. We introduce a novel objective for learning task decomposition, termed assistive value (AssistV), which measures the feasibility and speed for humans to repair the decomposed solution. We collect a dataset of human repair experiences on different decomposed solutions. Utilizing the collected data as in-context examples, we then learn to critique, refine, and rank decomposed solutions to improve AssistV. We validate our method under competitive programming problems: under 177 hours of human study, our method enables non-experts to solve 33.3% more problems, speeds them up by 3.3x, and empowers them to match unassisted experts.
Retrieval-augmented generation has raise extensive attention as it is promising to address the limitations of large language models including outdated knowledge and hallucinations. However, retrievers struggle to capture relevance, especially for queries with complex information needs. Recent work has proposed to improve relevance modeling by having large language models actively involved in retrieval, i.e., to guide retrieval with generation. In this paper, we show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner: a model’s response to a task input shows what might be needed to finish the task, and thus can serve as an informative context for retrieving more relevant knowledge which in turn helps generate a better response in another iteration. Compared with recent work which interleaves retrieval with generation when completing a single output, Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints. We evaluate Iter-RetGen on multi-hop question answering, fact verification, and commonsense reasoning, and show that it can flexibly leverage parametric knowledge and non-parametric knowledge, and is superior to or competitive with state-of-the-art retrieval-augmented baselines while causing fewer overheads of retrieval and generation. We can further improve performance via generation-augmented retrieval adaptation.
Open-domain questions are likely to be open-ended and ambiguous, leading to multiple valid answers. Existing approaches typically adopt the rerank-then-read framework, where a reader reads top-ranking evidence to predict answers. According to our empirical analysis, this framework faces three problems: first, to leverage a large reader under a memory constraint, the reranker should select only a few relevant passages to cover diverse answers, while balancing relevance and diversity is non-trivial; second, the small reading budget prevents the reader from accessing valuable retrieved evidence filtered out by the reranker; third, when using a generative reader to predict answers all at once based on all selected evidence, whether a valid answer will be predicted also pathologically depends on evidence of some other valid answer(s). To address these issues, we propose to answer open-domain multi-answer questions with a recall-then-verify framework, which separates the reasoning process of each answer so that we can make better use of retrieved evidence while also leveraging large models under the same memory constraint. Our framework achieves state-of-the-art results on two multi-answer datasets, and predicts significantly more gold answers than a rerank-then-read system that uses an oracle reranker.
Given that rich information is hidden behind ubiquitous numbers in text, numerical reasoning over text should be an essential skill of AI systems. To derive precise equations to solve numerical reasoning problems, previous work focused on modeling the structures of equations, and has proposed various structured decoders. Though structure modeling proves to be effective, these structured decoders construct a single equation in a pre-defined autoregressive order, potentially placing an unnecessary restriction on how a model should grasp the reasoning process. Intuitively, humans may have numerous pieces of thoughts popping up in no pre-defined order; thoughts are not limited to the problem at hand, and can even be concerned with other related problems. By comparing diverse thoughts and chaining relevant pieces, humans are less prone to errors. In this paper, we take this inspiration and propose CANTOR, a numerical reasoner that models reasoning steps using a directed acyclic graph where we produce diverse reasoning steps simultaneously without pre-defined decoding dependencies, and compare and chain relevant ones to reach a solution. Extensive experiments demonstrated the effectiveness of CANTOR under both fully-supervised and weakly-supervised settings.
Weakly supervised question answering usually has only the final answers as supervision signals while the correct solutions to derive the answers are not provided. This setting gives rise to the spurious solution problem: there may exist many spurious solutions that coincidentally derive the correct answer, but training on such solutions can hurt model performance (e.g., producing wrong solutions or answers). For example, for discrete reasoning tasks as on DROP, there may exist many equations to derive a numeric answer, and typically only one of them is correct. Previous learning methods mostly filter out spurious solutions with heuristics or using model confidence, but do not explicitly exploit the semantic correlations between a question and its solution. In this paper, to alleviate the spurious solution problem, we propose to explicitly exploit such semantic correlations by maximizing the mutual information between question-answer pairs and predicted solutions. Extensive experiments on four question answering datasets show that our method significantly outperforms previous learning methods in terms of task performance and is more effective in training models to produce correct solutions.
Existing neural methods for data-to-text generation are still struggling to produce long and diverse texts: they are insufficient to model input data dynamically during generation, to capture inter-sentence coherence, or to generate diversified expressions. To address these issues, we propose a Planning-based Hierarchical Variational Model (PHVM). Our model first plans a sequence of groups (each group is a subset of input items to be covered by a sentence) and then realizes each sentence conditioned on the planning result and the previously generated context, thereby decomposing long text generation into dependent sentence generation sub-tasks. To capture expression diversity, we devise a hierarchical latent structure where a global planning latent variable models the diversity of reasonable planning and a sequence of local latent variables controls sentence realization. Experiments show that our model outperforms state-of-the-art baselines in long and diverse text generation.