2024
pdf
bib
abs
TCSinger: Zero-Shot Singing Voice Synthesis with Style Transfer and Multi-Level Style Control
Yu Zhang
|
Ziyue Jiang
|
Ruiqi Li
|
Changhao Pan
|
Jinzheng He
|
Rongjie Huang
|
Chuxin Wang
|
Zhou Zhao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Zero-shot singing voice synthesis (SVS) with style transfer and style control aims to generate high-quality singing voices with unseen timbres and styles (including singing method, emotion, rhythm, technique, and pronunciation) from audio and text prompts. However, the multifaceted nature of singing styles poses a significant challenge for effective modeling, transfer, and control. Furthermore, current SVS models often fail to generate singing voices rich in stylistic nuances for unseen singers. To address these challenges, we introduce TCSinger, the first zero-shot SVS model for style transfer across cross-lingual speech and singing styles, along with multi-level style control. Specifically, TCSinger proposes three primary modules: 1) the clustering style encoder employs a clustering vector quantization model to stably condense style information into a compact latent space; 2) the Style and Duration Language Model (S&D-LM) concurrently predicts style information and phoneme duration, which benefits both; 3) the style adaptive decoder uses a novel mel-style adaptive normalization method to generate singing voices with enhanced details. Experimental results show that TCSinger outperforms all baseline models in synthesis quality, singer similarity, and style controllability across various tasks, including zero-shot style transfer, multi-level style control, cross-lingual style transfer, and speech-to-singing style transfer.
pdf
bib
abs
AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension
Qian Yang
|
Jin Xu
|
Wenrui Liu
|
Yunfei Chu
|
Ziyue Jiang
|
Xiaohuan Zhou
|
Yichong Leng
|
Yuanjun Lv
|
Zhou Zhao
|
Chang Zhou
|
Jingren Zhou
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recently, instruction-following audio-language models have received broad attention for human-audio interaction. However, the absence of benchmarks capable of evaluating audio-centric interaction capabilities has impeded advancements in this field. Previous models primarily focus on assessing different fundamental tasks, such as automatic speech recognition, and lack an assessment of the open-ended generative capabilities centered around audio. Thus, it is challenging to track the progression in the Large Audio-Language Models (LALMs) domain and to provide guidance for future improvement.In this paper, we introduce AIR-Bench (Audio InstRuction Benchmark), the first benchmark designed to evaluate the ability of LALMs to understand various types of audio signals (including human speech, natural sounds, and music), and furthermore, to interact with humans in the textual format. AIR-Bench encompasses two dimensions: foundation and chat benchmarks. The former consists of 19 tasks with approximately 19k single-choice questions, intending to inspect the basic single-task ability of LALMs. The latter one contains 2k instances of open-ended question-and-answer data, directly assessing the comprehension of the model on complex audio and its capacity to follow instructions. Both benchmarks require the model to generate hypotheses directly. We design a unified framework that leverages advanced language models, such as GPT-4, to evaluate the scores of generated hypotheses given the meta-information of the audio. Experimental results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation. By revealing the limitations of existing LALMs through evaluation results, AIR-Bench can provide insights into the direction of future research. Dataset and evaluation code are available at https://github.com/OFA-Sys/AIR-Bench.
pdf
bib
abs
Make-A-Voice: Revisiting Voice Large Language Models as Scalable Multilingual and Multitask Learners
Rongjie Huang
|
Chunlei Zhang
|
Yongqi Wang
|
Dongchao Yang
|
Jinchuan Tian
|
Zhenhui Ye
|
Luping Liu
|
Zehan Wang
|
Ziyue Jiang
|
Xuankai Chang
|
Jiatong Shi
|
Chao Weng
|
Zhou Zhao
|
Dong Yu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have successfully served as a general-purpose interface across multiple tasks and languages, while the adaptation of voice LLMs is mostly designed for specific purposes (either single-task or monolingual), where the advantages of LLMs especially for low-resource language processing and zero-shot task generalization are less exploited in the audio community. To bridge the gap, we introduce Make-A-Voice as a multi-modal voice LLM and conduct a comprehensive study on its capability to deal with multiple tasks/languages. When trained on ~200K hours of 6-language data for 4 voice generation applications, Make-A-Voice emerges notable advantages: 1) as scalable learners to improve performance with end-to-end local and global multiscale transformers; and 2) as multitask learners by adjusting prompts to share common knowledge across modalities (speech/singing) and present in-context learning abilities by generalizing to unseen tasks not explicitly train on; 3) as multilingual learners to alleviate data scarcity of low-resource languages by including rich-resource language training data. Experimental results demonstrate that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models in monolingual/cross-lingual voice generation. Audio samples are available at https://M-Voice.github.io
pdf
bib
abs
MobileSpeech: A Fast and High-Fidelity Framework for Mobile Zero-Shot Text-to-Speech
Shengpeng Ji
|
Ziyue Jiang
|
Hanting Wang
|
Jialong Zuo
|
Zhou Zhao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Zero-shot text-to-speech (TTS) has gained significant attention due to its powerful voice cloning capabilities, requiring only a few seconds of unseen speaker voice prompts. However, all previous work has been developed for cloud-based systems. Taking autoregressive models as an example, although these approaches achieve high-fidelity voice cloning, they fall short in terms of inference speed, model size, and robustness. Therefore, we propose MobileSpeech, which is a fast, lightweight, and robust zero-shot text-to-speech system based on mobile devices for the first time. Specifically: 1) leveraging discrete codec, we design a parallel speech mask decoder module called SMD, which incorporates hierarchical information from the speech codec and weight mechanisms across different codec layers during the generation process. Moreover, to bridge the gap between text and speech, we introduce a high-level probabilistic mask that simulates the progression of information flow from less to more during speech generation. 2) For speaker prompts, we extract fine-grained prompt duration from the prompt speech and incorporate text, prompt speech by cross attention in SMD. We demonstrate the effectiveness of MobileSpeech on multilingual datasets at different levels, achieving state-of-the-art results in terms of generating speed and speech quality. MobileSpeech achieves RTF of 0.09 on a single A100 GPU and we have successfully deployed MobileSpeech on mobile devices. Audio samples are available at https://mobilespeech.github.io/
2023
pdf
bib
abs
CLAPSpeech: Learning Prosody from Text Context with Contrastive Language-Audio Pre-Training
Zhenhui Ye
|
Rongjie Huang
|
Yi Ren
|
Ziyue Jiang
|
Jinglin Liu
|
Jinzheng He
|
Xiang Yin
|
Zhou Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Improving text representation has attracted much attention to achieve expressive text-to-speech (TTS). However, existing works only implicitly learn the prosody with masked token reconstruction tasks, which leads to low training efficiency and difficulty in prosody modeling. We propose CLAPSpeech, a cross-modal contrastive pre-training framework that learns from the prosody variance of the same text token under different contexts. Specifically, 1) with the design of a text encoder and a prosody encoder, we encourage the model to connect the text context with its corresponding prosody pattern in the joint multi-modal space; 2) we introduce a multi-scale pre-training pipeline to capture prosody patterns in multiple levels. 3) we show how to incorporate CLAPSpeech into existing TTS models for better prosody. Experiments on three datasets not only show that CLAPSpeech could improve the prosody prediction for existing TTS methods, but also demonstrate its generalization ability to adapt to multiple languages and multi-speaker text-to-speech. We also deeply analyze the principle behind the performance of CLAPSpeech. Ablation studies demonstrate the necessity of each component in CLAPSpeech. Source code and audio samples are available at
https://clapspeech.github.io.
pdf
bib
abs
FastDiff 2: Revisiting and Incorporating GANs and Diffusion Models in High-Fidelity Speech Synthesis
Rongjie Huang
|
Yi Ren
|
Ziyue Jiang
|
Chenye Cui
|
Jinglin Liu
|
Zhou Zhao
Findings of the Association for Computational Linguistics: ACL 2023
Generative adversarial networks (GANs) and denoising diffusion probabilistic models (DDPMs) have recently achieved impressive performances in image and audio synthesis. After revisiting their success in conditional speech synthesis, we find that 1) GANs sacrifice sample diversity for quality and speed, 2) diffusion models exhibit outperformed sample quality and diversity at a high computational cost, where achieving high-quality, fast, and diverse speech synthesis challenges all neural synthesizers. In this work, we propose to converge advantages from GANs and diffusion models by incorporating both classes, introducing dual-empowered modeling perspectives: 1) FastDiff 2 (DiffGAN), a diffusion model whose denoising process is parametrized by conditional GANs, and the non-Gaussian denoising distribution makes it much more stable to implement the reverse process with large steps sizes; and 2) FastDiff 2 (GANDiff), a generative adversarial network whose forward process is constructed by multiple denoising diffusion iterations, which exhibits better sample diversity than traditional GANs. Experimental results show that both variants enjoy an efficient 4-step sampling process and demonstrate superior sample quality and diversity. Audio samples are available at
https://RevisitSpeech.github.io/pdf
bib
abs
FluentSpeech: Stutter-Oriented Automatic Speech Editing with Context-Aware Diffusion Models
Ziyue Jiang
|
Qian Yang
|
Jialong Zuo
|
Zhenhui Ye
|
Rongjie Huang
|
Yi Ren
|
Zhou Zhao
Findings of the Association for Computational Linguistics: ACL 2023
Stutter removal is an essential scenario in the field of speech editing. However, when the speech recording contains stutters, the existing text-based speech editing approaches still suffer from: 1) the over-smoothing problem in the edited speech; 2) lack of robustness due to the noise introduced by stutter; 3) to remove the stutters, users are required to determine the edited region manually. To tackle the challenges in stutter removal, we propose FluentSpeech, a stutter-oriented automatic speech editing model. Specifically, 1) we propose a context-aware diffusion model that iteratively refines the modified mel-spectrogram with the guidance of context features; 2) we introduce a stutter predictor module to inject the stutter information into the hidden sequence; 3) we also propose a stutter-oriented automatic speech editing (SASE) dataset that contains spontaneous speech recordings with time-aligned stutter labels to train the automatic stutter localization model. Experimental results on VCTK and LibriTTS datasets demonstrate that our model achieves state-of-the-art performance on speech editing. Further experiments on our SASE dataset show that FluentSpeech can effectively improve the fluency of stuttering speech in terms of objective and subjective metrics. Code and audio samples can be found at
https://github.com/Zain-Jiang/Speech-Editing-Toolkit.