Automatic metrics for evaluating translation quality are typically validated by measuring how well they correlate with human assessments. However, correlation methods tend to capture only the ability of metrics to differentiate between good and bad source-translation pairs, overlooking their reliability in distinguishing alternative translations for the same source. In this paper, we confirm that this is indeed the case by showing that current metrics are insensitive to nuanced differences in translation quality. This effect is most pronounced when the quality is high and the variance among alternatives is low. Given this finding, we shift towards detecting high-quality correct translations, an important problem in practical decision-making scenarios where a binary check of correctness is prioritized over a nuanced evaluation of quality. Using the MQM framework as the gold standard, we systematically stress-test the ability of current metrics to identify translations with no errors as marked by humans. Our findings reveal that current metrics often over or underestimate translation quality, indicating significant room for improvement in machine translation evaluation.
Alignment with human preferences is an important step in developing accurate and safe large language models. This is no exception in machine translation (MT), where better handling of language nuances and context-specific variations leads to improved quality. However, preference data based on human feedback can be very expensive to obtain and curate at a large scale. Automatic metrics, on the other hand, can induce preferences, but they might not match human expectations perfectly. In this paper, we propose an approach that leverages the best of both worlds. We first collect sentence-level quality assessments from professional linguists on translations generated by multiple high-quality MT systems and evaluate the ability of current automatic metrics to recover these preferences. We then use this analysis to curate a new dataset, MT-Pref (metric induced translation preference) dataset, which comprises 18k instances covering 18 language directions, using texts sourced from multiple domains post-2022. We show that aligning TOWER models on MT-Pref significantly improves translation quality on WMT23 and FLORES benchmarks.
Reinforcement learning from human feedback (RLHF) is a recent technique to improve the quality of the text generated by a language model, making it closer to what humans would generate.A core ingredient in RLHF’s success in aligning and improving large language models (LLMs) is its reward model, trained using human feedback on model outputs. In machine translation (MT), where metrics trained from human annotations can readily be used as reward models, recent methods using minimum Bayes risk decoding and reranking have succeeded in improving the final quality of translation.In this study, we comprehensively explore and compare techniques for integrating quality metrics as reward models into the MT pipeline. This includes using the reward model for data filtering, during the training phase through RL, and at inference time by employing reranking techniques, and we assess the effects of combining these in a unified approach.Our experimental results, conducted across multiple translation tasks, underscore the crucial role of effective data filtering, based on estimated quality, in harnessing the full potential of RL in enhancing MT quality.Furthermore, our findings demonstrate the effectiveness of combining RL training with reranking techniques, showcasing substantial improvements in translation quality.
In this work, we present Tower v2, an improved iteration of the state-of-the-art open-weight Tower models, and the backbone of our submission to the WMT24 General Translation shared task. Tower v2 introduces key improvements including expanded language coverage, enhanced data quality, and increased model capacity up to 70B parameters. Our final submission combines these advancements with quality-aware decoding strategies, selecting translations based on multiple translation quality signals. The resulting system demonstrates significant improvement over previous versions, outperforming closed commercial systems like GPT-4o, Claude 3.5, and DeepL even at a smaller 7B scale.
Large language models (LLMs) are becoming a one-fits-many solution, but they sometimes hallucinate or produce unreliable output. In this paper, we investigate how hypothesis ensembling can improve the quality of the generated text for the specific problem of LLM-based machine translation. We experiment with several techniques for ensembling hypotheses produced by LLMs such as ChatGPT, LLaMA, and Alpaca. We provide a comprehensive study along multiple dimensions, including the method to generate hypotheses (multiple prompts, temperature-based sampling, and beam search) and the strategy to produce the final translation (instruction-based, quality-based reranking, and minimum Bayes risk (MBR) decoding). Our results show that MBR decoding is a very effective method, that translation quality can be improved using a small number of samples, and that instruction tuning has a strong impact on the relation between the diversity of the hypotheses and the sampling temperature.
Natural language generation has witnessed significant advancements due to the training of large language models on vast internet-scale datasets. Despite these advancements, there exists a critical challenge: These models can inadvertently generate content that is toxic, inaccurate, and unhelpful, and existing automatic evaluation metrics often fall short of identifying these shortcomings. As models become more capable, human feedback is an invaluable signal for evaluating and improving models. This survey aims to provide an overview of recent research that has leveraged human feedback to improve natural language generation. First, we introduce a taxonomy distilled from existing research to categorize and organize the varied forms of feedback. Next, we discuss how feedback can be described by its format and objective, and cover the two approaches proposed to use feedback (either for training or decoding): directly using feedback or training feedback models. We also discuss existing datasets for human-feedback data collection, and concerns surrounding feedback collection. Finally, we provide an overview of the nascent field of AI feedback, which uses large language models to make judgments based on a set of principles and minimize the need for human intervention. We also release a website of this survey at feedback-gap-survey.info.
Despite the progress in machine translation quality estimation and evaluation in the last years, decoding in neural machine translation (NMT) is mostly oblivious to this and centers around finding the most probable translation according to the model (MAP decoding), approximated with beam search. In this paper, we bring together these two lines of research and propose quality-aware decoding for NMT, by leveraging recent breakthroughs in reference-free and reference-based MT evaluation through various inference methods like N-best reranking and minimum Bayes risk decoding. We perform an extensive comparison of various possible candidate generation and ranking methods across four datasets and two model classes and find that quality-aware decoding consistently outperforms MAP-based decoding according both to state-of-the-art automatic metrics (COMET and BLEURT) and to human assessments.