Archiki Prasad


2024

pdf bib
ADaPT: As-Needed Decomposition and Planning with Language Models
Archiki Prasad | Alexander Koller | Mareike Hartmann | Peter Clark | Ashish Sabharwal | Mohit Bansal | Tushar Khot
Findings of the Association for Computational Linguistics: NAACL 2024

Large Language Models (LLMs) are increasingly being used for interactive decision-making tasks requiring planning and adapting to the environment. Recent works employ LLMs-as-agents in broadly two ways: iteratively determining the next action (iterative executors) or generating plans and executing sub-tasks using LLMs (plan-and-execute). However, these methods struggle with task complexity, as the inability to execute any sub-task may lead to task failure. To address these shortcomings, we introduce As-Needed Decomposition and Planning for complex Tasks (ADaPT), an approach that explicitly plans and decomposes complex sub-tasks as-needed, i.e., when the LLM is unable to execute them. ADaPT recursively decomposes sub-tasks to adapt to both task complexity and LLM capability. Our results demonstrate that ADaPT substantially outperforms established strong baselines, achieving success rates up to 28.3% higher in ALFWorld, 27% in WebShop, and 33% in TextCraft – a novel compositional dataset that we introduce. Through extensive analysis, we illustrate the importance of multilevel decomposition and establish that ADaPT dynamically adjusts to the capabilities of the executor LLM as well as to task complexity.

pdf bib
Soft Self-Consistency Improves Language Models Agents
Han Wang | Archiki Prasad | Elias Stengel-Eskin | Mohit Bansal
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Generations from large language models (LLMs) can be improved by sampling and scoring multiple solutions to select a final answer. Current “sample and select” methods such as self-consistency (SC) rely on majority voting to score answers. However, when tasks have many distinct and valid answers, selection by voting requires a large number of samples. This makes SC prohibitively expensive for interactive tasks that involve generating multiple actions (answers) sequentially. After establishing that majority voting fails to provide consistent gains on such tasks, we demonstrate how to increase success rates by softening the scoring criterion. We introduce Soft Self-Consistency (SOFT-SC), which replaces SC’s discontinuous scoring with a continuous score computed from model likelihoods, allowing for selection even when actions are sparsely distributed. SOFT-SC improves both performance and efficiency on long-horizon interactive tasks, requiring half as many samples as SC for comparable or better performance. For a fixed number of samples, SOFT-SC leads to a 1.3% increase over SC in absolute success rate on writing bash programs, a 6.6% increase on online shopping (WebShop), and a 4.7% increase for an interactive household game (ALFWorld). Finally, we show that SOFT-SC can be applied to both open-source and black-box models.

2023

pdf bib
MeetingQA: Extractive Question-Answering on Meeting Transcripts
Archiki Prasad | Trung Bui | Seunghyun Yoon | Hanieh Deilamsalehy | Franck Dernoncourt | Mohit Bansal
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With the ubiquitous use of online meeting platforms and robust automatic speech recognition systems, meeting transcripts have emerged as a promising domain for natural language tasks. Most recent works on meeting transcripts primarily focus on summarization and extraction of action items. However, meeting discussions also have a useful question-answering (QA) component, crucial to understanding the discourse or meeting content, and can be used to build interactive interfaces on top of long transcripts. Hence, in this work, we leverage this inherent QA component of meeting discussions and introduce MeetingQA, an extractive QA dataset comprising of questions asked by meeting participants and corresponding responses. As a result, questions can be open-ended and actively seek discussions, while the answers can be multi-span and distributed across multiple speakers. Our comprehensive empirical study of several robust baselines including long-context language models and recent instruction-tuned models reveals that models perform poorly on this task (F1 = 57.3) and severely lag behind human performance (F1 = 84.6), thus presenting a challenging new task for the community to improve upon.

pdf bib
ReCEval: Evaluating Reasoning Chains via Correctness and Informativeness
Archiki Prasad | Swarnadeep Saha | Xiang Zhou | Mohit Bansal
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Multi-step reasoning ability is fundamental to many natural language tasks, yet it is unclear what constitutes a good reasoning chain and how to evaluate them. Most existing methods focus solely on whether the reasoning chain leads to the correct conclusion, but this answer-oriented view may confound reasoning quality with other spurious shortcuts to predict the answer. To bridge this gap, we evaluate reasoning chains by viewing them as informal proofs that derive the final answer. Specifically, we propose ReCEval (Reasoning Chain Evaluation), a framework that evaluates reasoning chains via two key properties: (1) correctness, i.e., each step makes a valid inference based on information contained within the step, preceding steps, and input context, and (2) informativeness, i.e., each step provides new information that is helpful towards deriving the generated answer. We evaluate these properties by developing metrics using natural language inference models and 𝒱-Information. On multiple datasets, we show that ReCEval effectively identifies various error types and yields notable improvements compared to prior methods. We analyze the impact of step boundaries, and previous steps on evaluating correctness and demonstrate that our informativeness metric captures the expected flow of information in high-quality reasoning chains. Finally, we show that scoring reasoning chains based on ReCEval improves downstream task performance.

pdf bib
GrIPS: Gradient-free, Edit-based Instruction Search for Prompting Large Language Models
Archiki Prasad | Peter Hase | Xiang Zhou | Mohit Bansal
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Providing natural language instructions in prompts is a useful new paradigm for improving task performance of large language models in a zero-shot setting. Recent work has aimed to improve such prompts via manual rewriting or gradient-based tuning. However, manual rewriting is time-consuming and requires subjective interpretation, while gradient-based tuning can be extremely computationally demanding for large models and may not be feasible for API-based models. In this work, we introduce Gradient-free Instructional Prompt Search (GrIPS), a gradient-free, edit-based search approach for improving task instructions for large language models. GrIPS takes in instructions designed for humans and automatically returns an improved, edited prompt, while allowing for API-based tuning. With InstructGPT models, GrIPS improves the average task performance by up to 4.30 percentage points on eight classification tasks from the Natural Instructions dataset (with similar improvements for OPT, BLOOM, and FLAN-T5). We see improvements for both instruction-only prompts and instruction + k-shot examples prompts. Notably, GrIPS outperforms manual rewriting and purely example-based prompts while controlling for the available compute and data budget. Further, performance of GrIPS is comparable to select gradient-based tuning approaches. Qualitatively, we show our edits can simplify instructions and at times make them incoherent but nonetheless improve accuracy.

2021

pdf bib
The Effectiveness of Intermediate-Task Training for Code-Switched Natural Language Understanding
Archiki Prasad | Mohammad Ali Rehan | Shreya Pathak | Preethi Jyothi
Proceedings of the 1st Workshop on Multilingual Representation Learning

While recent benchmarks have spurred a lot of new work on improving the generalization of pretrained multilingual language models on multilingual tasks, techniques to improve code-switched natural language understanding tasks have been far less explored. In this work, we propose the use of bilingual intermediate pretraining as a reliable technique to derive large and consistent performance gains using code-switched text on three different NLP tasks: Natural Language Inference (NLI), Question Answering (QA) and Sentiment Analysis (SA). We show consistent performance gains on four different code-switched language-pairs (Hindi-English, Spanish-English, Tamil-English and Malayalam-English) for SA and on Hindi-English for NLI and QA. We also present a code-switched masked language modeling (MLM) pretraining technique that consistently benefits SA compared to standard MLM pretraining using real code-switched text.

2020

pdf bib
How Accents Confound: Probing for Accent Information in End-to-End Speech Recognition Systems
Archiki Prasad | Preethi Jyothi
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this work, we present a detailed analysis of how accent information is reflected in the internal representation of speech in an end-to-end automatic speech recognition (ASR) system. We use a state-of-the-art end-to-end ASR system, comprising convolutional and recurrent layers, that is trained on a large amount of US-accented English speech and evaluate the model on speech samples from seven different English accents. We examine the effects of accent on the internal representation using three main probing techniques: a) Gradient-based explanation methods, b) Information-theoretic measures, and c) Outputs of accent and phone classifiers. We find different accents exhibiting similar trends irrespective of the probing technique used. We also find that most accent information is encoded within the first recurrent layer, which is suggestive of how one could adapt such an end-to-end model to learn representations that are invariant to accents.