Baishakhi Ray


2024

pdf bib
Reasoning in Token Economies: Budget-Aware Evaluation of LLM Reasoning Strategies
Junlin Wang | Siddhartha Jain | Dejiao Zhang | Baishakhi Ray | Varun Kumar | Ben Athiwaratkun
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

A diverse array of reasoning strategies has been proposed to elicit the capabilities of large language models. However, in this paper, we point out that traditional evaluations which focus solely on performance metrics miss a key factor: the increased effectiveness due to additional compute. By overlooking this aspect, a skewed view of strategy efficiency is often presented. This paper introduces a framework that incorporates the compute budget into the evaluation, providing a more informative comparison that takes into account both performance metrics and computational cost. In this budget-aware perspective, we find that complex reasoning strategies often don’t surpass simpler baselines purely due to algorithmic ingenuity, but rather due to the larger computational resources allocated. When we provide a simple baseline like chain-of-thought self-consistency with comparable compute resources, it frequently outperforms reasoning strategies proposed in the literature. In this scale-aware perspective, we find that unlike self-consistency, certain strategies such as multi-agent debate or Reflexion can become worse if more compute budget is utilized.

pdf bib
CodeFort: Robust Training for Code Generation Models
Yuhao Zhang | Shiqi Wang | Haifeng Qian | Zijian Wang | Mingyue Shang | Linbo Liu | Sanjay Krishna Gouda | Baishakhi Ray | Murali Krishna Ramanathan | Xiaofei Ma | Anoop Deoras
Findings of the Association for Computational Linguistics: EMNLP 2024

Code generation models are not robust to small perturbations, which often lead to incorrect generations and significantly degrade the performance of these models. Although improving the robustness of code generation models is crucial to enhancing user experience in real-world applications, existing research efforts do not address this issue. To fill this gap, we propose CodeFort, a framework to improve the robustness of code generation models, generalizing a large variety of code perturbations to enrich the training data and enabling various robust training strategies, mixing data augmentation, batch augmentation, adversarial logits pairing, and contrastive learning, all carefully designed to support high-throughput training. Extensive evaluations show that we increase the average robust pass rates of baseline CodeGen models from 14.79 to 21.74. We notably decrease the robustness drop rate from 95.02% to 54.95% against code-syntax perturbations.

pdf bib
PropTest: Automatic Property Testing for Improved Visual Programming
Jaywon Koo | Ziyan Yang | Paola Cascante-Bonilla | Baishakhi Ray | Vicente Ordonez
Findings of the Association for Computational Linguistics: EMNLP 2024

Visual Programming has recently emerged as an alternative to end-to-end black-box visual reasoning models. This type of method leverages Large Language Models (LLMs) to generate the source code for an executable computer program that solves a given problem. This strategy has the advantage of offering an interpretable reasoning path and does not require finetuning a model with task-specific data. We propose PropTest, a general strategy that improves visual programming by further using an LLM to generate code that tests for visual properties in an initial round of proposed solutions. Our method generates tests for data-type consistency, output syntax, and semantic properties. PropTest achieves comparable results to state-of-the-art methods while using publicly available LLMs. This is demonstrated across different benchmarks on visual question answering and referring expression comprehension. Particularly, PropTest improves ViperGPT by obtaining 46.1% accuracy (+6.0%) on GQA using Llama3-8B and 59.5% (+8.1%) on RefCOCO+ using CodeLlama-34B.

2023

pdf bib
ContraCLM: Contrastive Learning For Causal Language Model
Nihal Jain | Dejiao Zhang | Wasi Uddin Ahmad | Zijian Wang | Feng Nan | Xiaopeng Li | Ming Tan | Ramesh Nallapati | Baishakhi Ray | Parminder Bhatia | Xiaofei Ma | Bing Xiang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite exciting progress in causal language models, the expressiveness of their representations is largely limited due to poor discrimination ability. To remedy this issue, we present CONTRACLM, a novel contrastive learning framework at both the token-level and the sequence-level. We assess CONTRACLM on a variety of downstream tasks. We show that CONTRACLM enhances the discrimination of representations and bridges the gap with encoder-only models, which makes causal language models better suited for tasks beyond language generation. Specifically, we attain 44% relative improvement on the Semantic Textual Similarity tasks and 34% on Code-to-Code Search tasks. Furthermore, by improving the expressiveness of representations, CONTRACLM also boosts the source code generation capability with 9% relative improvement on execution accuracy on the HumanEval benchmark.

pdf bib
ReCode: Robustness Evaluation of Code Generation Models
Shiqi Wang | Zheng Li | Haifeng Qian | Chenghao Yang | Zijian Wang | Mingyue Shang | Varun Kumar | Samson Tan | Baishakhi Ray | Parminder Bhatia | Ramesh Nallapati | Murali Krishna Ramanathan | Dan Roth | Bing Xiang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model’s robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.

pdf bib
A Static Evaluation of Code Completion by Large Language Models
Hantian Ding | Varun Kumar | Yuchen Tian | Zijian Wang | Rob Kwiatkowski | Xiaopeng Li | Murali Krishna Ramanathan | Baishakhi Ray | Parminder Bhatia | Sudipta Sengupta
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Large language models trained on code have shown great potential to increase productivity of software developers. Several execution-based benchmarks have been proposed to evaluate functional correctness of model-generated code on simple programming problems. Nevertheless, it is expensive to perform the same evaluation on complex real-world projects considering the execution cost. On the other hand, static analysis tools such as linters, which can detect errors without running the program, haven’t been well explored for evaluating code generation models. In this work, we propose a static evaluation framework to quantify static errors in Python code completions, by leveraging Abstract Syntax Trees. Compared with execution-based evaluation, our method is not only more efficient, but also applicable to code in the wild. For experiments, we collect code context from open source repos to generate one million function bodies using public models. Our static analysis reveals that Undefined Name and Unused Variable are the most common errors among others made by language models. Through extensive studies, we also show the impact of sampling temperature, model size, and context on static errors in code completions.

pdf bib
Summarize and Generate to Back-translate: Unsupervised Translation of Programming Languages
Wasi Uddin Ahmad | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Back-translation is widely known for its effectiveness in neural machine translation when there is little to no parallel data. In this approach, a source-to-target model is coupled with a target-to-source model trained in parallel. The target-to-source model generates noisy sources, while the source-to-target model is trained to reconstruct the targets and vice versa. Recent developments of multilingual pre-trained sequence-to-sequence models for programming languages have been very effective for a broad spectrum of downstream software engineering tasks. Hence, training them to build programming language translation systems via back-translation is compelling. However, these models cannot be further trained via back-translation since they learn to output sequences in the same language as the inputs during pre-training. As an alternative, we propose performing back-translation via code summarization and generation. In code summarization, a model learns to generate natural language (NL) summaries given code snippets. In code generation, the model learns to do the opposite. Therefore, target-to-source generation in back-translation can be viewed as a target-to-NL-to-source generation. We show that our proposed approach performs competitively with state-of-the-art methods. We have made the code publicly available.

2022

pdf bib
Towards Learning (Dis)-Similarity of Source Code from Program Contrasts
Yangruibo Ding | Luca Buratti | Saurabh Pujar | Alessandro Morari | Baishakhi Ray | Saikat Chakraborty
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Understanding the functional (dis)-similarity of source code is significant for code modeling tasks such as software vulnerability and code clone detection. We present DISCO (DIS-similarity of COde), a novel self-supervised model focusing on identifying (dis)similar functionalities of source code. Different from existing works, our approach does not require a huge amount of randomly collected datasets. Rather, we design structure-guided code transformation algorithms to generate synthetic code clones and inject real-world security bugs, augmenting the collected datasets in a targeted way. We propose to pre-train the Transformer model with such automatically generated program contrasts to better identify similar code in the wild and differentiate vulnerable programs from benign ones. To better capture the structural features of source code, we propose a new cloze objective to encode the local tree-based context (e.g., parents or sibling nodes). We pre-train our model with a much smaller dataset, the size of which is only 5% of the state-of-the-art models’ training datasets, to illustrate the effectiveness of our data augmentation and the pre-training approach. The evaluation shows that, even with much less data, DISCO can still outperform the state-of-the-art models in vulnerability and code clone detection tasks.

2021

pdf bib
Retrieval Augmented Code Generation and Summarization
Md Rizwan Parvez | Wasi Ahmad | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2021

Software developers write a lot of source code and documentation during software development. Intrinsically, developers often recall parts of source code or code summaries that they had written in the past while implementing software or documenting them. To mimic developers’ code or summary generation behavior, we propose a retrieval augmented framework, REDCODER, that retrieves relevant code or summaries from a retrieval database and provides them as a supplement to code generation or summarization models. REDCODER has a couple of uniqueness. First, it extends the state-of-the-art dense retrieval technique to search for relevant code or summaries. Second, it can work with retrieval databases that include unimodal (only code or natural language description) or bimodal instances (code-description pairs). We conduct experiments and extensive analysis on two benchmark datasets of code generation and summarization in Java and Python, and the promising results endorse the effectiveness of our proposed retrieval augmented framework.

pdf bib
Unified Pre-training for Program Understanding and Generation
Wasi Ahmad | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Code summarization and generation empower conversion between programming language (PL) and natural language (NL), while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART, a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks. PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding. Experiments on code summarization in the English language, code generation, and code translation in seven programming languages show that PLBART outperforms or rivals state-of-the-art models. Moreover, experiments on discriminative tasks, e.g., program repair, clone detection, and vulnerable code detection, demonstrate PLBART’s effectiveness in program understanding. Furthermore, analysis reveals that PLBART learns program syntax, style (e.g., identifier naming convention), logical flow (e.g., “if“ block inside an “else“ block is equivalent to “else if“ block) that are crucial to program semantics and thus excels even with limited annotations.

pdf bib
DIRECT : A Transformer-based Model for Decompiled Identifier Renaming
Vikram Nitin | Anthony Saieva | Baishakhi Ray | Gail Kaiser
Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)

Decompiling binary executables to high-level code is an important step in reverse engineering scenarios, such as malware analysis and legacy code maintenance. However, the generated high-level code is difficult to understand since the original variable names are lost. In this paper, we leverage transformer models to reconstruct the original variable names from decompiled code. Inherent differences between code and natural language present certain challenges in applying conventional transformer-based architectures to variable name recovery. We propose DIRECT, a novel transformer-based architecture customized specifically for the task at hand. We evaluate our model on a dataset of decompiled functions and find that DIRECT outperforms the previous state-of-the-art model by up to 20%. We also present ablation studies evaluating the impact of each of our modifications. We make the source code of DIRECT available to encourage reproducible research.

2020

pdf bib
A Transformer-based Approach for Source Code Summarization
Wasi Ahmad | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generating a readable summary that describes the functionality of a program is known as source code summarization. In this task, learning code representation by modeling the pairwise relationship between code tokens to capture their long-range dependencies is crucial. To learn code representation for summarization, we explore the Transformer model that uses a self-attention mechanism and has shown to be effective in capturing long-range dependencies. In this work, we show that despite the approach is simple, it outperforms the state-of-the-art techniques by a significant margin. We perform extensive analysis and ablation studies that reveal several important findings, e.g., the absolute encoding of source code tokens’ position hinders, while relative encoding significantly improves the summarization performance. We have made our code publicly available to facilitate future research.

2018

pdf bib
Building Language Models for Text with Named Entities
Md Rizwan Parvez | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text in many domains involves a significant amount of named entities. Predicting the entity names is often challenging for a language model as they appear less frequent on the training corpus. In this paper, we propose a novel and effective approach to building a language model which can learn the entity names by leveraging their entity type information. We also introduce two benchmark datasets based on recipes and Java programming codes, on which we evaluate the proposed model. Experimental results show that our model achieves 52.2% better perplexity in recipe generation and 22.06% on code generation than state-of-the-art language models.