Balaji Krishnamurthy


2023

pdf bib
HyHTM: Hyperbolic Geometry-based Hierarchical Topic Model
Simra Shahid | Tanay Anand | Nikitha Srikanth | Sumit Bhatia | Balaji Krishnamurthy | Nikaash Puri
Findings of the Association for Computational Linguistics: ACL 2023

Hierarchical Topic Models (HTMs) are useful for discovering topic hierarchies in a collection of documents. However, traditional HTMs often produce hierarchies where lower-level topics are unrelated and not specific enough to their higher-level topics. Additionally, these methods can be computationally expensive. We present HyHTM - a Hyperbolic geometry-based Hierarchical Topic Model - that addresses these limitations by incorporating hierarchical information from hyperbolic geometry to explicitly model hierarchies in topic models. Experimental results with four baselines show that HyHTM can better attend to parent-child relationships among topics. HyHTM produces coherent topic hierarchies that specialize in granularity from generic higher-level topics to specific lower-level topics. Further, our model is significantly faster and leaves a much smaller memory footprint than our best-performing baseline. We have made the source code for our algorithm publicly accessible.

pdf bib
INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of Language Models
H S V N S Kowndinya Renduchintala | Krishnateja Killamsetty | Sumit Bhatia | Milan Aggarwal | Ganesh Ramakrishnan | Rishabh Iyer | Balaji Krishnamurthy
Findings of the Association for Computational Linguistics: EMNLP 2023

A salient characteristic of pre-trained language models (PTLMs) is a remarkable improvement in their generalization capability and emergence of new capabilities with increasing model capacity and pre-training dataset size. Consequently, we are witnessing the development of enormous models pushing the state-of-the-art. It is, however, imperative to realize that this inevitably leads to prohibitively long training times, extortionate computing costs, and a detrimental environmental impact. Significant efforts are underway to make PTLM training more efficient through innovations in model architectures, training pipelines, and loss function design, with scant attention being paid to optimizing the utility of training data. The key question that we ask is whether it is possible to train PTLMs by employing only highly informative subsets of the training data while maintaining downstream performance? Building upon the recent progress in informative data subset selection, we show how we can employ submodular optimization to select highly representative subsets of the training corpora and demonstrate that the proposed framework can be applied to efficiently train multiple PTLMs (BERT, BioBERT, GPT-2) using only a fraction of data. Further, we perform a rigorous empirical evaluation to show that the resulting models achieve up to ~99% of the performance of the fully-trained models. We made our framework publicly available at https://github.com/Efficient-AI/ingenious.

pdf bib
A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In Zero Shot
Aanisha Bhattacharyya | Yaman K Singla | Balaji Krishnamurthy | Rajiv Ratn Shah | Changyou Chen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Multimedia content, such as advertisements and story videos, exhibit a rich blend of creativity and multiple modalities. They incorporate elements like text, visuals, audio, and storytelling techniques, employing devices like emotions, symbolism, and slogans to convey meaning. There is a dearth of large annotated training datasets in the multimedia domain hindering the development of supervised learning models with satisfactory performance for real-world applications. On the other hand, the rise of large language models (LLMs) has witnessed remarkable zero-shot performance in various natural language processing (NLP) tasks, such as emotion classification, question answering, and topic classification. To leverage such advanced techniques to bridge this performance gap in multimedia understanding, we propose verbalizing long videos to generate their descriptions in natural language, followed by performing video-understanding tasks on the generated story as opposed to the original video. Through extensive experiments on fifteen video-understanding tasks, we demonstrate that our method, despite being zero-shot, achieves significantly better results than supervised baselines for video understanding. Furthermore, to alleviate a lack of story understanding benchmarks, we publicly release the first dataset on a crucial task in computational social science on persuasion strategy identification.

pdf bib
Synthesizing Human Gaze Feedback for Improved NLP Performance
Varun Khurana | Yaman Kumar | Nora Hollenstein | Rajesh Kumar | Balaji Krishnamurthy
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Integrating human feedback in models can improve the performance of natural language processing (NLP) models. Feedback can be either explicit (e.g. ranking used in training language models) or implicit (e.g. using human cognitive signals in the form of eyetracking). Prior eye tracking and NLP research reveal that cognitive processes, such as human scanpaths, gleaned from human gaze patterns aid in the understanding and performance of NLP models. However, the collection of real eyetracking data for NLP tasks is challenging due to the requirement of expensive and precise equipment coupled with privacy invasion issues. To address this challenge, we propose ScanTextGAN, a novel model for generating human scanpaths over text. We show that ScanTextGAN-generated scanpaths can approximate meaningful cognitive signals in human gaze patterns. We include synthetically generated scanpaths in four popular NLP tasks spanning six different datasets as proof of concept and show that the models augmented with generated scanpaths improve the performance of all downstream NLP tasks.

2022

pdf bib
CoSe-Co: Text Conditioned Generative CommonSense Contextualizer
Rachit Bansal | Milan Aggarwal | Sumit Bhatia | Jivat Kaur | Balaji Krishnamurthy
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Pre-trained Language Models (PTLMs) have been shown to perform well on natural language tasks. Many prior works have leveraged structured commonsense present in the form of entities linked through labeled relations in Knowledge Graphs (KGs) to assist PTLMs. Retrieval approaches use KG as a separate static module which limits coverage since KGs contain finite knowledge. Generative methods train PTLMs on KG triples to improve the scale at which knowledge can be obtained. However, training on symbolic KG entities limits their applicability in tasks involving natural language text where they ignore overall context. To mitigate this, we propose a CommonSense Contextualizer (CoSe-Co) conditioned on sentences as input to make it generically usable in tasks for generating knowledge relevant to the overall context of input text. To train CoSe-Co, we propose a novel dataset comprising of sentence and commonsense knowledge pairs. The knowledge inferred by CoSe-Co is diverse and contain novel entities not present in the underlying KG. We augment generated knowledge in Multi-Choice QA and Open-ended CommonSense Reasoning tasks leading to improvements over current best methods on CSQA, ARC, QASC and OBQA datasets. We also demonstrate its applicability in improving performance of a baseline model for paraphrase generation task.

pdf bib
LM-CORE: Language Models with Contextually Relevant External Knowledge
Jivat Kaur | Sumit Bhatia | Milan Aggarwal | Rachit Bansal | Balaji Krishnamurthy
Findings of the Association for Computational Linguistics: NAACL 2022

Large transformer-based pre-trained language models have achieved impressive performance on a variety of knowledge-intensive tasks and can capture factual knowledge in their parameters. We argue that storing large amounts of knowledge in the model parameters is sub-optimal given the ever-growing amounts of knowledge and resource requirements. We posit that a more efficient alternative is to provide explicit access to contextually relevant structured knowledge to the model and train it to use that knowledge. We present LM-CORE – a general framework to achieve this– that allows decoupling of the language model training from the external knowledge source and allows the latter to be updated without affecting the already trained model. Experimental results show that LM-CORE, having access to external knowledge, achieves significant and robust outperformance over state-of-the-art knowledge-enhanced language models on knowledge probing tasks; can effectively handle knowledge updates; and performs well on two downstream tasks. We also present a thorough error analysis highlighting the successes and failures of LM-CORE. Our code and model checkpoints are publicly available.

2021

pdf bib
TAN-NTM: Topic Attention Networks for Neural Topic Modeling
Madhur Panwar | Shashank Shailabh | Milan Aggarwal | Balaji Krishnamurthy
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Topic models have been widely used to learn text representations and gain insight into document corpora. To perform topic discovery, most existing neural models either take document bag-of-words (BoW) or sequence of tokens as input followed by variational inference and BoW reconstruction to learn topic-word distribution. However, leveraging topic-word distribution for learning better features during document encoding has not been explored much. To this end, we develop a framework TAN-NTM, which processes document as a sequence of tokens through a LSTM whose contextual outputs are attended in a topic-aware manner. We propose a novel attention mechanism which factors in topic-word distribution to enable the model to attend on relevant words that convey topic related cues. The output of topic attention module is then used to carry out variational inference. We perform extensive ablations and experiments resulting in ~9-15 percentage improvement over score of existing SOTA topic models in NPMI coherence on several benchmark datasets - 20Newsgroups, Yelp Review Polarity and AGNews. Further, we show that our method learns better latent document-topic features compared to existing topic models through improvement on two downstream tasks: document classification and topic guided keyphrase generation.

2020

pdf bib
Form2Seq : A Framework for Higher-Order Form Structure Extraction
Milan Aggarwal | Hiresh Gupta | Mausoom Sarkar | Balaji Krishnamurthy
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Document structure extraction has been a widely researched area for decades with recent works performing it as a semantic segmentation task over document images using fully-convolution networks. Such methods are limited by image resolution due to which they fail to disambiguate structures in dense regions which appear commonly in forms. To mitigate this, we propose Form2Seq, a novel sequence-to-sequence (Seq2Seq) inspired framework for structure extraction using text, with a specific focus on forms, which leverages relative spatial arrangement of structures. We discuss two tasks; 1) Classification of low-level constituent elements (TextBlock and empty fillable Widget) into ten types such as field captions, list items, and others; 2) Grouping lower-level elements into higher-order constructs, such as Text Fields, ChoiceFields and ChoiceGroups, used as information collection mechanism in forms. To achieve this, we arrange the constituent elements linearly in natural reading order, feed their spatial and textual representations to Seq2Seq framework, which sequentially outputs prediction of each element depending on the final task. We modify Seq2Seq for grouping task and discuss improvements obtained through cascaded end-to-end training of two tasks versus training in isolation. Experimental results show the effectiveness of our text-based approach achieving an accuracy of 90% on classification task and an F1 of 75.82, 86.01, 61.63 on groups discussed above respectively, outperforming segmentation baselines. Further we show our framework achieves state of the results for table structure recognition on ICDAR 2013 dataset.