Chris Alberti


2024

pdf bib
𝜇PLAN: Summarizing using a Content Plan as Cross-Lingual Bridge
Fantine Huot | Joshua Maynez | Chris Alberti | Reinald Kim Amplayo | Priyanka Agrawal | Constanza Fierro | Shashi Narayan | Mirella Lapata
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Cross-lingual summarization aims to generate a summary in one languagegiven input in a different language, allowing for the dissemination ofrelevant content among different language speaking populations. Thetask is challenging mainly due to the paucity of cross-lingualdatasets and the compounded difficulty of summarizing andtranslating.This work presents 𝜇PLAN, an approach to cross-lingual summarization that uses an intermediate planning step as a cross-lingual bridge. We formulate the plan as a sequence of entities capturing thesummary’s content and the order in which it should becommunicated. Importantly, our plans abstract from surface form: usinga multilingual knowledge base, we align entities to their canonicaldesignation across languages and generate the summary conditioned onthis cross-lingual bridge and the input. Automatic and human evaluation on the XWikis dataset (across four language pairs) demonstrates that our planning objective achieves state-of-the-art performance interms of informativeness and faithfulness. Moreover, 𝜇PLAN modelsimprove the zero-shot transfer to new cross-lingual language pairscompared to baselines without a planning component.

2023

pdf bib
Coreference Resolution through a seq2seq Transition-Based System
Bernd Bohnet | Chris Alberti | Michael Collins
Transactions of the Association for Computational Linguistics, Volume 11

Most recent coreference resolution systems use search algorithms over possible spans to identify mentions and resolve coreference. We instead present a coreference resolution system that uses a text-to-text (seq2seq) paradigm to predict mentions and links jointly. We implement the coreference system as a transition system and use multilingual T5 as an underlying language model. We obtain state-of-the-art accuracy on the CoNLL-2012 datasets with 83.3 F1-score for English (a 2.3 higher F1-score than previous work [Dobrovolskii, 2021]) using only CoNLL data for training, 68.5 F1-score for Arabic (+4.1 higher than previous work), and 74.3 F1-score for Chinese (+5.3). In addition we use the SemEval-2010 data sets for experiments in the zero-shot setting, a few-shot setting, and supervised setting using all available training data. We obtain substantially higher zero-shot F1-scores for 3 out of 4 languages than previous approaches and significantly exceed previous supervised state-of-the-art results for all five tested languages. We provide the code and models as open source.1

pdf bib
QAmeleon: Multilingual QA with Only 5 Examples
Priyanka Agrawal | Chris Alberti | Fantine Huot | Joshua Maynez | Ji Ma | Sebastian Ruder | Kuzman Ganchev | Dipanjan Das | Mirella Lapata
Transactions of the Association for Computational Linguistics, Volume 11

The availability of large, high-quality datasets has been a major driver of recent progress in question answering (QA). Such annotated datasets, however, are difficult and costly to collect, and rarely exist in languages other than English, rendering QA technology inaccessible to underrepresented languages. An alternative to building large monolingual training datasets is to leverage pre-trained language models (PLMs) under a few-shot learning setting. Our approach, QAmeleon, uses a PLM to automatically generate multilingual data upon which QA models are fine-tuned, thus avoiding costly annotation. Prompt tuning the PLM with only five examples per language delivers accuracy superior to translation-based baselines; it bridges nearly 60% of the gap between an English-only baseline and a fully-supervised upper bound fine-tuned on almost 50,000 hand-labeled examples; and consistently leads to improvements compared to directly fine-tuning a QA model on labeled examples in low resource settings. Experiments on the TyDiqa-GoldP and MLQA benchmarks show that few-shot prompt tuning for data synthesis scales across languages and is a viable alternative to large-scale annotation.1

2022

pdf bib
Conciseness: An Overlooked Language Task
Felix Stahlberg | Aashish Kumar | Chris Alberti | Shankar Kumar
Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)

We report on novel investigations into training models that make sentences concise. We define the task and show that it is different from related tasks such as summarization and simplification. For evaluation, we release two test sets, consisting of 2000 sentences each, that were annotated by two and five human annotators, respectively. We demonstrate that conciseness is a difficult task for which zero-shot setups with large neural language models often do not perform well. Given the limitations of these approaches, we propose a synthetic data generation method based on round-trip translations. Using this data to either train Transformers from scratch or fine-tune T5 models yields our strongest baselines that can be further improved by fine-tuning on an artificial conciseness dataset that we derived from multi-annotator machine translation test sets.

2021

pdf bib
QED: A Framework and Dataset for Explanations in Question Answering
Matthew Lamm | Jennimaria Palomaki | Chris Alberti | Daniel Andor | Eunsol Choi | Livio Baldini Soares | Michael Collins
Transactions of the Association for Computational Linguistics, Volume 9

A question answering system that in addition to providing an answer provides an explanation of the reasoning that leads to that answer has potential advantages in terms of debuggability, extensibility, and trust. To this end, we propose QED, a linguistically informed, extensible framework for explanations in question answering. A QED explanation specifies the relationship between a question and answer according to formal semantic notions such as referential equality, sentencehood, and entailment. We describe and publicly release an expert-annotated dataset of QED explanations built upon a subset of the Google Natural Questions dataset, and report baseline models on two tasks—post- hoc explanation generation given an answer, and joint question answering and explanation generation. In the joint setting, a promising result suggests that training on a relatively small amount of QED data can improve question answering. In addition to describing the formal, language-theoretic motivations for the QED approach, we describe a large user study showing that the presence of QED explanations significantly improves the ability of untrained raters to spot errors made by a strong neural QA baseline.

2020

pdf bib
ETC: Encoding Long and Structured Inputs in Transformers
Joshua Ainslie | Santiago Ontanon | Chris Alberti | Vaclav Cvicek | Zachary Fisher | Philip Pham | Anirudh Ravula | Sumit Sanghai | Qifan Wang | Li Yang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Transformer models have advanced the state of the art in many Natural Language Processing (NLP) tasks. In this paper, we present a new Transformer architecture, “Extended Transformer Construction” (ETC), that addresses two key challenges of standard Transformer architectures, namely scaling input length and encoding structured inputs. To scale attention to longer inputs, we introduce a novel global-local attention mechanism between global tokens and regular input tokens. We also show that combining global-local attention with relative position encodings and a “Contrastive Predictive Coding” (CPC) pre-training objective allows ETC to encode structured inputs. We achieve state-of-the-art results on four natural language datasets requiring long and/or structured inputs.

pdf bib
Data Weighted Training Strategies for Grammatical Error Correction
Jared Lichtarge | Chris Alberti | Shankar Kumar
Transactions of the Association for Computational Linguistics, Volume 8

Recent progress in the task of Grammatical Error Correction (GEC) has been driven by addressing data sparsity, both through new methods for generating large and noisy pretraining data and through the publication of small and higher-quality finetuning data in the BEA-2019 shared task. Building upon recent work in Neural Machine Translation (NMT), we make use of both kinds of data by deriving example-level scores on our large pretraining data based on a smaller, higher-quality dataset. In this work, we perform an empirical study to discover how to best incorporate delta-log-perplexity, a type of example scoring, into a training schedule for GEC. In doing so, we perform experiments that shed light on the function and applicability of delta-log-perplexity. Models trained on scored data achieve state- of-the-art results on common GEC test sets.

2019

pdf bib
Fusion of Detected Objects in Text for Visual Question Answering
Chris Alberti | Jeffrey Ling | Michael Collins | David Reitter
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

To advance models of multimodal context, we introduce a simple yet powerful neural architecture for data that combines vision and natural language. The “Bounding Boxes in Text Transformer” (B2T2) also leverages referential information binding words to portions of the image in a single unified architecture. B2T2 is highly effective on the Visual Commonsense Reasoning benchmark, achieving a new state-of-the-art with a 25% relative reduction in error rate compared to published baselines and obtaining the best performance to date on the public leaderboard (as of May 22, 2019). A detailed ablation analysis shows that the early integration of the visual features into the text analysis is key to the effectiveness of the new architecture. A reference implementation of our models is provided.

pdf bib
Corpora Generation for Grammatical Error Correction
Jared Lichtarge | Chris Alberti | Shankar Kumar | Noam Shazeer | Niki Parmar | Simon Tong
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Grammatical Error Correction (GEC) has been recently modeled using the sequence-to-sequence framework. However, unlike sequence transduction problems such as machine translation, GEC suffers from the lack of plentiful parallel data. We describe two approaches for generating large parallel datasets for GEC using publicly available Wikipedia data. The first method extracts source-target pairs from Wikipedia edit histories with minimal filtration heuristics while the second method introduces noise into Wikipedia sentences via round-trip translation through bridge languages. Both strategies yield similar sized parallel corpora containing around 4B tokens. We employ an iterative decoding strategy that is tailored to the loosely supervised nature of our constructed corpora. We demonstrate that neural GEC models trained using either type of corpora give similar performance. Fine-tuning these models on the Lang-8 corpus and ensembling allows us to surpass the state of the art on both the CoNLL ‘14 benchmark and the JFLEG task. We present systematic analysis that compares the two approaches to data generation and highlights the effectiveness of ensembling.

pdf bib
Synthetic QA Corpora Generation with Roundtrip Consistency
Chris Alberti | Daniel Andor | Emily Pitler | Jacob Devlin | Michael Collins
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We introduce a novel method of generating synthetic question answering corpora by combining models of question generation and answer extraction, and by filtering the results to ensure roundtrip consistency. By pretraining on the resulting corpora we obtain significant improvements on SQuAD2 and NQ, establishing a new state-of-the-art on the latter. Our synthetic data generation models, for both question generation and answer extraction, can be fully reproduced by finetuning a publicly available BERT model on the extractive subsets of SQuAD2 and NQ. We also describe a more powerful variant that does full sequence-to-sequence pretraining for question generation, obtaining exact match and F1 at less than 0.1% and 0.4% from human performance on SQuAD2.

pdf bib
Natural Questions: A Benchmark for Question Answering Research
Tom Kwiatkowski | Jennimaria Palomaki | Olivia Redfield | Michael Collins | Ankur Parikh | Chris Alberti | Danielle Epstein | Illia Polosukhin | Jacob Devlin | Kenton Lee | Kristina Toutanova | Llion Jones | Matthew Kelcey | Ming-Wei Chang | Andrew M. Dai | Jakob Uszkoreit | Quoc Le | Slav Petrov
Transactions of the Association for Computational Linguistics, Volume 7

We present the Natural Questions corpus, a question answering data set. Questions consist of real anonymized, aggregated queries issued to the Google search engine. An annotator is presented with a question along with a Wikipedia page from the top 5 search results, and annotates a long answer (typically a paragraph) and a short answer (one or more entities) if present on the page, or marks null if no long/short answer is present. The public release consists of 307,373 training examples with single annotations; 7,830 examples with 5-way annotations for development data; and a further 7,842 examples with 5-way annotated sequestered as test data. We present experiments validating quality of the data. We also describe analysis of 25-way annotations on 302 examples, giving insights into human variability on the annotation task. We introduce robust metrics for the purposes of evaluating question answering systems; demonstrate high human upper bounds on these metrics; and establish baseline results using competitive methods drawn from related literature.

2016

pdf bib
Globally Normalized Transition-Based Neural Networks
Daniel Andor | Chris Alberti | David Weiss | Aliaksei Severyn | Alessandro Presta | Kuzman Ganchev | Slav Petrov | Michael Collins
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Improved Transition-Based Parsing and Tagging with Neural Networks
Chris Alberti | David Weiss | Greg Coppola | Slav Petrov
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Structured Training for Neural Network Transition-Based Parsing
David Weiss | Chris Alberti | Michael Collins | Slav Petrov
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)