Ed Chi


2024

pdf bib
Aligning Large Language Models with Recommendation Knowledge
Yuwei Cao | Nikhil Mehta | Xinyang Yi | Raghunandan Hulikal Keshavan | Lukasz Heldt | Lichan Hong | Ed Chi | Maheswaran Sathiamoorthy
Findings of the Association for Computational Linguistics: NAACL 2024

Large language models (LLMs) have recently been used as backbones for recommender systems. However, their performance often lags behind conventional methods in standard tasks like retrieval. We attribute this to a mismatch between LLMs’ knowledge and the knowledge crucial for effective recommendations. While LLMs excel at natural language reasoning, they cannot model complex user-item interactions inherent in recommendation tasks. We propose bridging the knowledge gap and equipping LLMs with recommendation-specific knowledge to address this. Operations such as Masked Item Modeling (MIM) and Bayesian Personalized Ranking (BPR) have found success in conventional recommender systems. Inspired by this, we simulate these operations through natural language to generate auxiliary-task data samples that encode item correlations and user preferences. Fine-tuning LLMs on such auxiliary-task data samples and incorporating more informative recommendation-task data samples facilitates the injection of recommendation-specific knowledge into LLMs. Extensive experiments across retrieval, ranking, and rating prediction tasks on LLMs such as FLAN-T5-Base and FLAN-T5-XL show the effectiveness of our technique in domains such as Amazon Toys & Games, Beauty, and Sports & Outdoors. Notably, our method outperforms conventional and LLM-based baselines, including the current SOTA, by significant margins in retrieval, showcasing its potential for enhancing recommendation quality.

2023

pdf bib
Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them
Mirac Suzgun | Nathan Scales | Nathanael Schärli | Sebastian Gehrmann | Yi Tay | Hyung Won Chung | Aakanksha Chowdhery | Quoc Le | Ed Chi | Denny Zhou | Jason Wei
Findings of the Association for Computational Linguistics: ACL 2023

BIG-Bench (Srivastava et al., 2022) is a diverse evaluation suite that focuses on tasks believed to be beyond the capabilities of current language models. Language models have already made good progress on this benchmark, with the best model in the BIG-Bench paper outperforming average reported human-rater results on 65% of the BIG-Bench tasks via few-shot prompting. But on what tasks do language models fall short of average human-rater performance, and are those tasks actually unsolvable by current language models? In this work, we focus on a suite of 23 challenging BIG-Bench tasks which we call BIG-Bench Hard (BBH). These are the tasks for which prior language model evaluations did not outperform the average human-rater. We find that applying chain-of-thought (CoT) prompting to BBH tasks enables PaLM to surpass the average human-rater performance on 10 of the 23 tasks, and Codex (code-davinci-002) to surpass the average human-rater performance on 17 of the 23 tasks. Since many tasks in BBH require multi-step reasoning, few-shot prompting without CoT, as done in the BIG-Bench evaluations (Srivastava et al., 2022), substantially underestimates the best performance and capabilities of language models, which is better captured via CoT prompting. As further analysis, we explore the interaction between CoT and model scale on BBH, finding that CoT enables emergent task performance on several BBH tasks with otherwise flat scaling curves.

pdf bib
Improving Classifier Robustness through Active Generative Counterfactual Data Augmentation
Ananth Balashankar | Xuezhi Wang | Yao Qin | Ben Packer | Nithum Thain | Ed Chi | Jilin Chen | Alex Beutel
Findings of the Association for Computational Linguistics: EMNLP 2023

Counterfactual Data Augmentation (CDA) is a commonly used technique for improving robustness in natural language classifiers. However, one fundamental challenge is how to discover meaningful counterfactuals and efficiently label them, with minimal human labeling cost. Most existing methods either completely rely on human-annotated labels, an expensive process which limits the scale of counterfactual data, or implicitly assume label invariance, which may mislead the model with incorrect labels. In this paper, we present a novel framework that utilizes counterfactual generative models to generate a large number of diverse counterfactuals by actively sampling from regions of uncertainty, and then automatically label them with a learned auxiliary classifier. Our key insight is that we can more correctly label the generated counterfactuals by training a pairwise classifier that interpolates the relationship between the original example and the counterfactual. We demonstrate that with a small amount of human-annotated counterfactual data (10%), we can generate a counterfactual augmentation dataset with learned labels, that provides an 18-20% improvement in robustness and a 14-21% reduction in errors on 6 out-of-domain datasets, comparable to that of a fully human-annotated counterfactual dataset for both sentiment classification and question paraphrase tasks.

2021

pdf bib
Can We Improve Model Robustness through Secondary Attribute Counterfactuals?
Ananth Balashankar | Xuezhi Wang | Ben Packer | Nithum Thain | Ed Chi | Alex Beutel
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Developing robust NLP models that perform well on many, even small, slices of data is a significant but important challenge, with implications from fairness to general reliability. To this end, recent research has explored how models rely on spurious correlations, and how counterfactual data augmentation (CDA) can mitigate such issues. In this paper we study how and why modeling counterfactuals over multiple attributes can go significantly further in improving model performance. We propose RDI, a context-aware methodology which takes into account the impact of secondary attributes on the model’s predictions and increases sensitivity for secondary attributes over reweighted counterfactually augmented data. By implementing RDI in the context of toxicity detection, we find that accounting for secondary attributes can significantly improve robustness, with improvements in sliced accuracy on the original dataset up to 7% compared to existing robustness methods. We also demonstrate that RDI generalizes to the coreference resolution task and provide guidelines to extend this to other tasks.

2020

pdf bib
CAT-Gen: Improving Robustness in NLP Models via Controlled Adversarial Text Generation
Tianlu Wang | Xuezhi Wang | Yao Qin | Ben Packer | Kang Li | Jilin Chen | Alex Beutel | Ed Chi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

NLP models are shown to suffer from robustness issues, i.e., a model’s prediction can be easily changed under small perturbations to the input. In this work, we present a Controlled Adversarial Text Generation (CAT-Gen) model that, given an input text, generates adversarial texts through controllable attributes that are known to be invariant to task labels. For example, in order to attack a model for sentiment classification over product reviews, we can use the product categories as the controllable attribute which would not change the sentiment of the reviews. Experiments on real-world NLP datasets demonstrate that our method can generate more diverse and fluent adversarial texts, compared to many existing adversarial text generation approaches. We further use our generated adversarial examples to improve models through adversarial training, and we demonstrate that our generated attacks are more robust against model re-training and different model architectures.

2014

pdf bib
Location and Language Use in Social Media
Ed Chi
Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science