2024
pdf
bib
abs
PCA-Bench: Evaluating Multimodal Large Language Models in Perception-Cognition-Action Chain
Liang Chen
|
Yichi Zhang
|
Shuhuai Ren
|
Haozhe Zhao
|
Zefan Cai
|
Yuchi Wang
|
Peiyi Wang
|
Xiangdi Meng
|
Tianyu Liu
|
Baobao Chang
Findings of the Association for Computational Linguistics: ACL 2024
We present PCA-Bench, a multimodal decision-making benchmark for evaluating the integrated capabilities of Multimodal Large Language Models (MLLMs). Departing from previous benchmarks focusing on simplistic tasks and individual model capability, PCA-Bench introduces three complex scenarios: autonomous driving, domestic robotics, and open-world games. Given task instructions and diverse contexts, the model is required to seamlessly integrate multiple capabilities of Perception, Cognition, and Action in a reasoning chain to make accurate decisions. Moreover, PCA-Bench features error localization capabilities, scrutinizing model inaccuracies in areas such as perception, knowledge, or reasoning. This enhances the reliability of deploying MLLMs. To balance accuracy and efficiency in evaluation, we propose PCA-Eval, an automatic evaluation protocol, and assess 10 prevalent MLLMs. The results reveal significant performance disparities between open-source models and powerful proprietary models like GPT-4 Vision. To address this, we introduce Embodied-Instruction-Evolution (EIE), an automatic framework for synthesizing instruction tuning examples in multimodal embodied environments. EIE generates 7,510 training examples in PCA-Bench and enhances the performance of open-source MLLMs, occasionally surpassing GPT-4 Vision (+3% in decision accuracy), thereby validating the effectiveness of EIE. Our findings suggest that robust MLLMs like GPT4-Vision show promise for decision-making in embodied agents, opening new avenues for MLLM research. All benchmark data and evaluation code are made public.
pdf
bib
abs
Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning
Shuzheng Si
|
Helan Hu
|
Haozhe Zhao
|
Shuang Zeng
|
Kaikai An
|
Zefan Cai
|
Baobao Chang
Findings of the Association for Computational Linguistics: ACL 2024
Distantly-Supervised Named Entity Recognition (DS-NER) effectively alleviates the burden of annotation, but meanwhile suffers from the label noise. Recent works attempt to adopt the teacher-student framework to gradually refine the training labels and improve the overall robustness. However, we argue that these teacher-student methods achieve limited performance because the poor calibration of the teacher network produces incorrectly pseudo-labeled samples, leading to error propagation. Therefore, we attempt to mitigate this issue by proposing: (1) Uncertainty-Aware Teacher Learning that leverages the prediction uncertainty to reduce the number of incorrect pseudo labels in the self-training stage; (2) Student-Student Collaborative Learning that allows the transfer of reliable labels between two student networks instead of indiscriminately relying on all pseudo labels from its teacher. This approach further enables a full exploration of mislabeled samples rather than simply filtering unreliable pseudo-labeled samples. We evaluate our proposed method on five DS-NER datasets, demonstrating that our method is superior to the state-of-the-art DS-NER denoising methods.
pdf
bib
abs
Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation
Haozhe Zhao
|
Zefan Cai
|
Shuzheng Si
|
Liang Chen
|
Yufeng He
|
Kaikai An
|
Baobao Chang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large-scale multilingual Pretrained Language Models (mPLMs) yield impressive performance on cross-language tasks, yet significant performance disparities exist across different languages within the same mPLM. Previous studies endeavored to narrow these disparities by supervise fine-tuning the mPLMs with multilingual data.However, obtaining labeled multilingual data is time-consuming, and fine-tuning mPLM with limited labeled multilingual data merely encapsulates the knowledge specific to the labeled data.Therefore, we introduce **ALSACE** to leverage the learned knowledge from the well-performing languages to guide under-performing ones within the same mPLM, eliminating the need for additional labeled multilingual data. Experiments show that ALSACE effectively mitigates language-level performance disparity across various mPLMs while showing the competitive performance on different multilingual NLU tasks, ranging from full resource to limited resource settings. The code for our approach is available at https://github.com/pkunlp-icler/ALSACE.
2023
pdf
bib
abs
Coarse-to-Fine Dual Encoders are Better Frame Identification Learners
Kaikai An
|
Ce Zheng
|
Bofei Gao
|
Haozhe Zhao
|
Baobao Chang
Findings of the Association for Computational Linguistics: EMNLP 2023
Frame identification aims to find semantic frames associated with target words in a sentence. Recent researches measure the similarity or matching score between targets and candidate frames by modeling frame definitions. However, they either lack sufficient representation learning of the definitions or face challenges in efficiently selecting the most suitable frame from over 1000 candidate frames. Moreover, commonly used lexicon filtering (lf) to obtain candidate frames for the target may ignore out-of-vocabulary targets and cause inadequate frame modeling. In this paper, we propose CoFFTEA, a ̲Coarse-to- ̲Fine ̲Frame and ̲Target ̲Encoders ̲Architecture. With contrastive learning and dual encoders, CoFFTEA efficiently and effectively models the alignment between frames and targets. By employing a coarse-to-fine curriculum learning procedure, CoFFTEA gradually learns to differentiate frames with varying degrees of similarity. Experimental results demonstrate that CoFFTEA outperforms previous models by 0.93 overall scores and 1.53 R@1 without lf. Further analysis suggests that CoFFTEA can better model the relationships between frame and frame, as well as target and target. The code for our approach is available at https://github.com/pkunlp-icler/COFFTEA.