James Gung


2023

pdf bib
Intent Induction from Conversations for Task-Oriented Dialogue Track at DSTC 11
James Gung | Raphael Shu | Emily Moeng | Wesley Rose | Salvatore Romeo | Arshit Gupta | Yassine Benajiba | Saab Mansour | Yi Zhang
Proceedings of The Eleventh Dialog System Technology Challenge

With increasing demand for and adoption of virtual assistants, recent work has investigated ways to accelerate bot schema design through the automatic induction of intents or the induction of slots and dialogue states. However, a lack of dedicated benchmarks and standardized evaluation has made progress difficult to track and comparisons between systems difficult to make. This challenge track, held as part of the Eleventh Dialog Systems Technology Challenge, introduces a benchmark that aims to evaluate methods for the automatic induction of customer intents in a realistic setting of customer service interactions between human agents and customers. We propose two subtasks for progressively tackling the automatic induction of intents and corresponding evaluation methodologies. We then present three datasets suitable for evaluating the tasks and propose simple baselines. Finally, we summarize the submissions and results of the challenge track, for which we received submissions from 34 teams.

pdf bib
Pre-training Intent-Aware Encoders for Zero- and Few-Shot Intent Classification
Mujeen Sung | James Gung | Elman Mansimov | Nikolaos Pappas | Raphael Shu | Salvatore Romeo | Yi Zhang | Vittorio Castelli
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Intent classification (IC) plays an important role in task-oriented dialogue systems. However, IC models often generalize poorly when training without sufficient annotated examples for each user intent. We propose a novel pre-training method for text encoders that uses contrastive learning with intent psuedo-labels to produce embeddings that are well-suited for IC tasks, reducing the need for manual annotations. By applying this pre-training strategy, we also introduce Pre-trained Intent-aware Encoder (PIE), which is designed to align encodings of utterances with their intent names. Specifically, we first train a tagger to identify key phrases within utterances that are crucial for interpreting intents. We then use these extracted phrases to create examples for pre-training a text encoder in a contrastive manner. As a result, our PIE model achieves up to 5.4% and 4.0% higher accuracy than the previous state-of-the-art pre-trained text encoder for the N-way zero- and one-shot settings on four IC datasets.

pdf bib
NatCS: Eliciting Natural Customer Support Dialogues
James Gung | Emily Moeng | Wesley Rose | Arshit Gupta | Yi Zhang | Saab Mansour
Findings of the Association for Computational Linguistics: ACL 2023

Despite growing interest in applications based on natural customer support conversations,there exist remarkably few publicly available datasets that reflect the expected characteristics of conversations in these settings. Existing task-oriented dialogue datasets, which were collected to benchmark dialogue systems mainly in written human-to-bot settings, are not representative of real customer support conversations and do not provide realistic benchmarks for systems that are applied to natural data. To address this gap, we introduce NatCS, a multi-domain collection of spoken customer service conversations. We describe our process for collecting synthetic conversations between customers and agents based on natural language phenomena observed in real conversations. Compared to previous dialogue datasets, the conversations collected with our approach are more representative of real human-to-human conversations along multiple metrics. Finally, we demonstrate potential uses of NatCS, including dialogue act classification and intent induction from conversations as potential applications, showing that dialogue act annotations in NatCS provide more effective training data for modeling real conversations compared to existing synthetic written datasets. We publicly release NatCS to facilitate research in natural dialog systems

pdf bib
Measuring and Mitigating Constraint Violations of In-Context Learning for Utterance-to-API Semantic Parsing
Shufan Wang | Sébastien Jean | Sailik Sengupta | James Gung | Nikolaos Pappas | Yi Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023

In executable task-oriented semantic parsing, the system aims to translate users’ utterances in natural language to machine-interpretable programs (API calls) that can be executed according to pre-defined API specifications. With the popularity of Large Language Models (LLMs), in-context learning offers a strong baseline for such scenarios, especially in data-limited regimes. However, LLMs are known to hallucinate and therefore pose a formidable challenge in constraining generated content. Thus, it remains uncertain if LLMs can effectively perform task-oriented utterance-to-API generation, where respecting the API’s structural and task-specific constraints is crucial. In this work, we seek to measure, analyze and mitigate such constraints violations. First, we identify the categories of various constraints in obtaining API-semantics from task-oriented utterances, and define fine-grained metrics that complement traditional ones. Second, we leverage these metrics to conduct a detailed error analysis of constraints violations seen in state-of-the-art LLMs, which motivates us to investigate two popular mitigation strategies– Semantic-Retrieval of Demonstrations (SRD) and API-aware Constrained Decoding (API-CD). Our experiments show that these strategies are effective at reducing constraints violations and improving the quality of the generated API calls, but require careful consideration given their implementation complexity and latency.

pdf bib
DiactTOD: Learning Generalizable Latent Dialogue Acts for Controllable Task-Oriented Dialogue Systems
Qingyang Wu | James Gung | Raphael Shu | Yi Zhang
Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue

Dialogue act annotations are important to improve response generation quality in task-oriented dialogue systems. However, it can be challenging to use dialogue acts to control response generation in a generalizable way because different datasets and tasks may have incompatible annotations. While alternative methods that utilize latent action spaces or reinforcement learning do not require explicit annotations, they may lack interpretability or face difficulties defining task-specific rewards. In this work, we present a novel end-to-end latent dialogue act model (DiactTOD) that represents dialogue acts in a latent space. DiactTOD, when pre-trained on a large corpus, is able to predict and control dialogue acts to generate controllable responses using these latent representations in a zero-shot fashion. Our approach demonstrates state-of-the-art performance across a wide range of experimental settings on the MultiWOZ dataset, including zero-shot, few-shot, and full data fine-tuning with both end-to-end and policy optimization configurations.

2022

pdf bib
PropBank Comes of Age—Larger, Smarter, and more Diverse
Sameer Pradhan | Julia Bonn | Skatje Myers | Kathryn Conger | Tim O’gorman | James Gung | Kristin Wright-bettner | Martha Palmer
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics

This paper describes the evolution of the PropBank approach to semantic role labeling over the last two decades. During this time the PropBank frame files have been expanded to include non-verbal predicates such as adjectives, prepositions and multi-word expressions. The number of domains, genres and languages that have been PropBanked has also expanded greatly, creating an opportunity for much more challenging and robust testing of the generalization capabilities of PropBank semantic role labeling systems. We also describe the substantial effort that has gone into ensuring the consistency and reliability of the various annotated datasets and resources, to better support the training and evaluation of such systems

2021

pdf bib
Predicate Representations and Polysemy in VerbNet Semantic Parsing
James Gung | Martha Palmer
Proceedings of the 14th International Conference on Computational Semantics (IWCS)

Despite recent advances in semantic role labeling propelled by pre-trained text encoders like BERT, performance lags behind when applied to predicates observed infrequently during training or to sentences in new domains. In this work, we investigate how role labeling performance on low-frequency predicates and out-of-domain data can be further improved by using VerbNet, a verb lexicon that groups verbs into hierarchical classes based on shared syntactic and semantic behavior and defines semantic representations describing relations between arguments. We find that VerbNet classes provide an effective level of abstraction, improving generalization on low-frequency predicates by allowing them to learn from the training examples of other predicates belonging to the same class. We also find that joint training of VerbNet role labeling and predicate disambiguation of VerbNet classes for polysemous verbs leads to improvements in both tasks, naturally supporting the extraction of VerbNet’s semantic representations.

pdf bib
SemLink 2.0: Chasing Lexical Resources
Kevin Stowe | Jenette Preciado | Kathryn Conger | Susan Windisch Brown | Ghazaleh Kazeminejad | James Gung | Martha Palmer
Proceedings of the 14th International Conference on Computational Semantics (IWCS)

The SemLink resource provides mappings between a variety of lexical semantic ontologies, each with their strengths and weaknesses. To take advantage of these differences, the ability to move between resources is essential. This work describes advances made to improve the usability of the SemLink resource: the automatic addition of new instances and mappings, manual corrections, sense-based vectors and collocation information, and architecture built to automatically update the resource when versions of the underlying resources change. These updates improve coverage, provide new tools to leverage the capabilities of these resources, and facilitate seamless updates, ensuring the consistency and applicability of these mappings in the future.

2019

pdf bib
VerbNet Representations: Subevent Semantics for Transfer Verbs
Susan Windisch Brown | Julia Bonn | James Gung | Annie Zaenen | James Pustejovsky | Martha Palmer
Proceedings of the First International Workshop on Designing Meaning Representations

This paper announces the release of a new version of the English lexical resource VerbNet with substantially revised semantic representations designed to facilitate computer planning and reasoning based on human language. We use the transfer of possession and transfer of information event representations to illustrate both the general framework of the representations and the types of nuances the new representations can capture. These representations use a Generative Lexicon-inspired subevent structure to track attributes of event participants across time, highlighting oppositions and temporal and causal relations among the subevents.

2018

pdf bib
The New Propbank: Aligning Propbank with AMR through POS Unification
Tim O’Gorman | Sameer Pradhan | Martha Palmer | Julia Bonn | Katie Conger | James Gung
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2016

pdf bib
Word Substitution in Short Answer Extraction: A WordNet-based Approach
Qingqing Cai | James Gung | Maochen Guan | Gerald Kurlandski | Adam Pease
Proceedings of the 8th Global WordNet Conference (GWC)

We describe the implementation of a short answer extraction system. It consists of a simple sentence selection front-end and a two phase approach to answer extraction from a sentence. In the first phase sentence classification is performed with a classifier trained with the passive aggressive algorithm utilizing the UIUC dataset and taxonomy and a feature set including word vectors. This phase outperforms the current best published results on that dataset. In the second phase, a sieve algorithm consisting of a series of increasingly general extraction rules is applied, using WordNet to find word types aligned with the UIUC classifications determined in the first phase. Some very preliminary performance metrics are presented.

2015

pdf bib
CUAB: Supervised Learning of Disorders and their Attributes using Relations
James Gung | John Osborne | Steven Bethard
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)

2012

pdf bib
Summarization of Historical Articles Using Temporal Event Clustering
James Gung | Jugal Kalita
Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies