2024
pdf
bib
abs
A Usage-centric Take on Intent Understanding in E-Commerce
Wendi Zhou
|
Tianyi Li
|
Pavlos Vougiouklis
|
Mark Steedman
|
Jeff Z. Pan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Identifying and understanding user intents is a pivotal task for E-Commerce. Despite its essential role in product recommendation and business user profiling analysis, intent understanding has not been consistently defined or accurately benchmarked. In this paper, we focus on predicative user intents as “how a customer uses a product”, and pose intent understanding as a natural language reasoning task, independent of product ontologies. We identify two weaknesses of FolkScope, the SOTA E-Commerce Intent Knowledge Graph: category-rigidity and property-ambiguity. They limit its ability to strongly align user intents with products having the most desirable property, and to recommend useful products across diverse categories. Following these observations, we introduce a Product Recovery Benchmark featuring a novel evaluation framework and an example dataset. We further validate the above FolkScope weaknesses on this benchmark. Our code and dataset are available at https://github.com/stayones/Usgae-Centric-Intent-Understanding.
pdf
bib
abs
CoTKR: Chain-of-Thought Enhanced Knowledge Rewriting for Complex Knowledge Graph Question Answering
Yike Wu
|
Yi Huang
|
Nan Hu
|
Yuncheng Hua
|
Guilin Qi
|
Jiaoyan Chen
|
Jeff Z. Pan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent studies have explored the use of Large Language Models (LLMs) with Retrieval Augmented Generation (RAG) for Knowledge Graph Question Answering (KGQA). They typically require rewriting retrieved subgraphs into natural language formats comprehensible to LLMs. However, when tackling complex questions, the knowledge rewritten by existing methods may include irrelevant information, omit crucial details, or fail to align with the question’s semantics. To address them, we propose a novel rewriting method CoTKR, Chain- of-Thought Enhanced Knowledge Rewriting, for generating reasoning traces and corresponding knowledge in an interleaved manner, thereby mitigating the limitations of single-step knowledge rewriting. Additionally, to bridge the preference gap between the knowledge rewriter and the question answering (QA) model, we propose a training strategy PAQAF, Preference Alignment from Question Answering Feedback, for leveraging feedback from the QA model to further optimize the knowledge rewriter. We conduct experiments using various LLMs across several KGQA benchmarks. Experimental results demonstrate that, compared with previous knowledge rewriting methods, CoTKR generates the most beneficial knowledge representation for QA models, which significantly improves the performance of LLMs in KGQA.
pdf
bib
Improving Retrieval-augmented Text-to-SQL with AST-based Ranking and Schema Pruning
Zhili Shen
|
Pavlos Vougiouklis
|
Chenxin Diao
|
Kaustubh Vyas
|
Yuanyi Ji
|
Jeff Z. Pan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
pdf
bib
abs
AppBench: Planning of Multiple APIs from Various APPs for Complex User Instruction
Hongru Wang
|
Rui Wang
|
Boyang Xue
|
Heming Xia
|
Jingtao Cao
|
Zeming Liu
|
Jeff Z. Pan
|
Kam-Fai Wong
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) can interact with the real world by connecting with versatile external APIs, resulting in better problem-solving and task automation capabilities. Previous research primarily either focuses on APIs with limited arguments from a single source or overlooks the complex dependency relationship between different APIs. However, it is essential to utilize multiple APIs collaboratively from various sources, especially for complex user instructions. In this paper, we introduce MetaBench, the first benchmark to evaluate LLMs’ ability to plan and execute multiple APIs from various sources in order to complete the user’s task. Specifically, we consider two significant challenges in multiple APIs: 1) graph structures: some APIs can be executed independently while others need to be executed one by one, resulting in graph-like execution order; and 2) permission constraints: which source is authorized to execute the API call. We have experimental results on 9 distinct LLMs; e.g., GPT-4o achieves only a 2.0% success rate at the most complex instruction, revealing that the existing state-of-the-art LLMs still cannot perform well in this situation even with the help of in-context learning and finetuning. Our code and data are publicly available at
https://github.com/ruleGreen/AppBench.
pdf
bib
abs
Inference Helps PLMs’ Conceptual Understanding: Improving the Abstract Inference Ability with Hierarchical Conceptual Entailment Graphs
Juncai Li
|
Ru Li
|
Xiaoli Li
|
Qinghua Chai
|
Jeff Z. Pan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The abstract inference capability of the Language Model plays a pivotal role in boosting its generalization and reasoning prowess in Natural Language Inference (NLI). Entailment graphs are crafted precisely for this purpose, focusing on learning entailment relations among predicates. Yet, prevailing approaches overlook the *polysemy* and *hierarchical nature of concepts* during entity conceptualization. This oversight disregards how arguments might entail differently across various concept levels, thereby missing potential entailment connections. To tackle this hurdle, we introduce the *concept pyramid* and propose the HiCon-EG (Hierarchical Conceptual Entailment Graph) framework, which organizes arguments hierarchically, delving into entailment relations at diverse concept levels. By learning entailment relationships at different concept levels, the model is guided to better understand concepts so as to improve its abstract inference capabilities. Our method enhances scalability and efficiency in acquiring common-sense knowledge through leveraging statistical language distribution instead of manual labeling, Experimental results show that entailment relations derived from HiCon-EG significantly bolster abstract detection tasks. Our code is available at https://github.com/SXUCFN/HiCon-EG
pdf
bib
abs
Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs
Junjie Wang
|
Mingyang Chen
|
Binbin Hu
|
Dan Yang
|
Ziqi Liu
|
Yue Shen
|
Peng Wei
|
Zhiqiang Zhang
|
Jinjie Gu
|
Jun Zhou
|
Jeff Z. Pan
|
Wen Zhang
|
Huajun Chen
Findings of the Association for Computational Linguistics: EMNLP 2024
Improving the performance of large language models (LLMs) in complex question-answering (QA) scenarios has always been a research focal point. Recent studies have attempted to enhance LLMs’ performance by combining step-wise planning with external retrieval. While effective for advanced models like GPT-3.5, smaller LLMs face challenges in decomposing complex questions, necessitating supervised fine-tuning. Previous work has relied on manual annotation and knowledge distillation from teacher LLMs, which are time-consuming and not accurate enough. In this paper, we introduce a novel framework for enhancing LLMs’ planning capabilities by using planning data derived from knowledge graphs (KGs). LLMs fine-tuned with this data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval. Evaluations on multiple datasets, including our newly proposed benchmark, highlight the effectiveness of our framework and the benefits of KG-derived planning data.
pdf
bib
abs
Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA
Wenyu Huang
|
Guancheng Zhou
|
Hongru Wang
|
Pavlos Vougiouklis
|
Mirella Lapata
|
Jeff Z. Pan
Findings of the Association for Computational Linguistics: EMNLP 2024
Retrieval-Augmented Generation (RAG) is widely used to inject external non-parametric knowledge into large language models (LLMs). Recent works suggest that Knowledge Graphs (KGs) contain valuable external knowledge for LLMs. Retrieving information from KGs differs from extracting it from document sets. Most existing approaches seek to directly retrieve relevant subgraphs, thereby eliminating the need for extensive SPARQL annotations, traditionally required by semantic parsing methods. In this paper, we model the subgraph retrieval task as a conditional generation task handled by small language models. Specifically, we define a subgraph identifier as a sequence of relations, each represented as a special token stored in the language models. Our base generative subgraph retrieval model, consisting of only 220M parameters, achieves competitive retrieval performance compared to state-of-the-art models relying on 7B parameters, demonstrating that small language models are capable of performing the subgraph retrieval task. Furthermore, our largest 3B model, when plugged with an LLM reader, sets new SOTA end-to-end performance on both the WebQSP and CWQ benchmarks. Our model and data will be made available online: https://github.com/hwy9855/GSR.
pdf
bib
abs
TacoERE: Cluster-aware Compression for Event Relation Extraction
Yong Guan
|
Xiaozhi Wang
|
Lei Hou
|
Juanzi Li
|
Jeff Z. Pan
|
Jiaoyan Chen
|
Freddy Lecue
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Event relation extraction (ERE) is a critical and fundamental challenge for natural language processing. Existing work mainly focuses on directly modeling the entire document, which cannot effectively handle long-range dependencies and information redundancy. To address these issues, we propose a cluster-aware compression method for improving event relation extraction (TacoERE), which explores a compression-then-extraction paradigm. Specifically, we first introduce document clustering for modeling event dependencies. It splits the document into intra- and inter-clusters, where intra-clusters aim to enhance the relations within the same cluster, while inter-clusters attempt to model the related events at arbitrary distances. Secondly, we utilize cluster summarization to simplify and highlight important text content of clusters for mitigating information redundancy and event distance. We have conducted extensive experiments on both pre-trained language models, such as RoBERTa, and large language models, such as ChatGPT and GPT-4, on three ERE datasets, i.e., MAVEN-ERE, EventStoryLine and HiEve. Experimental results demonstrate that TacoERE is an effective method for ERE.
2023
pdf
bib
abs
Uncovering Implicit Inferences for Improved Relational Argument Mining
Ameer Saadat-Yazdi
|
Jeff Z. Pan
|
Nadin Kokciyan
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
Argument mining seeks to extract arguments and their structure from unstructured texts. Identifying relations between arguments (such as attack, support, and neutral) is a challenging task because two arguments may be related to each other via implicit inferences. This task often requires external commonsense knowledge to discover how one argument relates to another. State-of-the-art methods, however, rely on pre-defined knowledge graphs, and thus might not cover target argument pairs well. We introduce a new generative neuro-symbolic approach to finding inference chains that connect the argument pairs by making use of the Commonsense Transformer (COMET). We evaluate our approach on three datasets for both the two-label (attack/support) and three-label (attack/support/neutral) tasks. Our approach significantly outperforms the state-of-the-art, by 2-5% in F1 score, on all three datasets.
2022
pdf
bib
abs
KEViN: A Knowledge Enhanced Validity and Novelty Classifier for Arguments
Ameer Saadat-Yazdi
|
Xue Li
|
Sandrine Chausson
|
Vaishak Belle
|
Björn Ross
|
Jeff Z. Pan
|
Nadin Kökciyan
Proceedings of the 9th Workshop on Argument Mining
The ArgMining 2022 Shared Task is concerned with predicting the validity and novelty of an inference for a given premise and conclusion pair. We propose two feed-forward network based models (KEViN1 and KEViN2), which combine features generated from several pretrained transformers and the WikiData knowledge graph. The transformers are used to predict entailment and semantic similarity, while WikiData is used to provide a semantic measure between concepts in the premise-conclusion pair. Our proposed models show significant improvement over RoBERTa, with KEViN1 outperforming KEViN2 and obtaining second rank on both subtasks (A and B) of the ArgMining 2022 Shared Task.
2021
pdf
bib
abs
A Knowledge-Guided Framework for Frame Identification
Xuefeng Su
|
Ru Li
|
Xiaoli Li
|
Jeff Z. Pan
|
Hu Zhang
|
Qinghua Chai
|
Xiaoqi Han
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Frame Identification (FI) is a fundamental and challenging task in frame semantic parsing. The task aims to find the exact frame evoked by a target word in a given sentence. It is generally regarded as a classification task in existing work, where frames are treated as discrete labels or represented using onehot embeddings. However, the valuable knowledge about frames is neglected. In this paper, we propose a Knowledge-Guided Frame Identification framework (KGFI) that integrates three types frame knowledge, including frame definitions, frame elements and frame-to-frame relations, to learn better frame representation, which guides the KGFI to jointly map target words and frames into the same embedding space and subsequently identify the best frame by calculating the dot-product similarity scores between the target word embedding and all of the frame embeddings. The extensive experimental results demonstrate KGFI significantly outperforms the state-of-the-art methods on two benchmark datasets.
2015
pdf
bib
Ontology Authoring Inspired By Dialogue
Artemis Parvizi
|
Yuan Ren
|
Markel Vigo
|
Kees van Deemter
|
Chris Mellish
|
Jeff Z. Pan
|
Robert Stevens
|
Caroline Jay
Proceedings of the 1st Workshop on Language and Ontologies
pdf
bib
When is Lying the Right Choice?
Federico Cerutti
|
Artemis Parvizi
|
Alice Toniolo
|
Dave Braines
|
Geeth R. de Mel
|
Timothy J. Norman
|
Nir Oren
|
Jeff Z. Pan
|
Gavin Pearson
|
Stephen D. Pipes
|
Paul Sullivan
Proceedings of the 1st Workshop on Language and Ontologies
2013
pdf
bib
Transfer Learning Based Cross-lingual Knowledge Extraction for Wikipedia
Zhigang Wang
|
Zhixing Li
|
Juanzi Li
|
Jie Tang
|
Jeff Z. Pan
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
pdf
bib
A Pilot Experiment in Knowledge Authoring as Dialogue
Artemis Parvizi
|
Caroline Jay
|
Christopher Mellish
|
Jeff Z. Pan
|
Yuan Ren
|
Robert Stevens
|
Kees van Deemter
Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013) – Short Papers
2010
pdf
bib
Charting the Potential of Description Logic for the Generation of Referring Expressions
Yuan Ren
|
Kees van Deemter
|
Jeff Z. Pan
Proceedings of the 6th International Natural Language Generation Conference