Junda Wu


2024

pdf bib
Personalized Federated Learning for Text Classification with Gradient-Free Prompt Tuning
Rui Wang | Tong Yu | Ruiyi Zhang | Sungchul Kim | Ryan Rossi | Handong Zhao | Junda Wu | Subrata Mitra | Lina Yao | Ricardo Henao
Findings of the Association for Computational Linguistics: NAACL 2024

In this paper, we study personalized federated learning for text classification with Pretrained Language Models (PLMs). We identify two challenges in efficiently leveraging PLMs for personalized federated learning: 1) Communication. PLMs are usually large in size, e.g., with hundreds of millions of parameters, inducing huge communication cost in a federated setting. 2) Local Training. Training with PLMs generally requires back-propagation, during which memory consumption can be several times that of the forward-propagation. This may not be affordable when the PLMs are trained locally on the clients that are resource constrained, e.g., mobile devices with limited access to memory resources. Additionally, the proprietary PLMs can be provided as concealed APIs, for which the back-propagation operations may not be available. In solving these, we propose a training framework that includes an approach of discrete local search for gradient-free local training, along with a compression mechanism inspired from the linear word analogy that allows communicating with discretely indexed tokens, thus significantly reducing the communication cost. Experiments show that our gradient-free framework achieves superior performance compared with baselines.

pdf bib
InstructGraph: Boosting Large Language Models via Graph-centric Instruction Tuning and Preference Alignment
Jianing Wang | Junda Wu | Yupeng Hou | Yao Liu | Ming Gao | Julian McAuley
Findings of the Association for Computational Linguistics: ACL 2024

Do current large language models (LLMs) better solve graph reasoning and generation tasks with parameter updates? In this paper, we propose InstructGraph, a framework that empowers LLMs with the abilities of graph reasoning and generation by instruction tuning and preference alignment. Specifically, we first propose a structured format verbalizer to unify all graph data into a universal code-like format, which can simply represent the graph without any external graph-specific encoders. Furthermore, a graph instruction tuning stage is introduced to guide LLMs in solving graph reasoning and generation tasks. Finally, we identify potential hallucination problems in graph tasks and sample negative instances for preference alignment, the target of which is to enhance the output’s reliability of the model. Extensive experiments across multiple graph-centric tasks exhibit that InstructGraph can achieve the best performance and outperform GPT-4 and LLaMA2 by more than 13% and 38%, respectively.

pdf bib
Few-Shot Dialogue Summarization via Skeleton-Assisted Prompt Transfer in Prompt Tuning
Kaige Xie | Tong Yu | Haoliang Wang | Junda Wu | Handong Zhao | Ruiyi Zhang | Kanak Mahadik | Ani Nenkova | Mark Riedl
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

In real-world scenarios, labeled samples for dialogue summarization are usually limited (i.e., few-shot) due to high annotation costs for high-quality dialogue summaries. To efficiently learn from few-shot samples, previous works have utilized massive annotated data from other downstream tasks and then performed prompt transfer in prompt tuning so as to enable cross-task knowledge transfer. However, existing general-purpose prompt transfer techniques lack consideration for dialogue-specific information. In this paper, we focus on improving the prompt transfer from dialogue state tracking to dialogue summarization and propose Skeleton-Assisted Prompt Transfer (SAPT), which leverages skeleton generation as extra supervision that functions as a medium connecting the distinct source and target task and resulting in the model’s better consumption of dialogue state information. To automatically extract dialogue skeletons as supervised training data for skeleton generation, we design a novel approach with perturbation-based probes requiring neither annotation effort nor domain knowledge. Training the model on such skeletons can also help preserve model capability during prompt transfer. Our method significantly outperforms existing baselines. In-depth analyses demonstrate the effectiveness of our method in facilitating cross-task knowledge transfer in few-shot dialogue summarization.

pdf bib
DeCoT: Debiasing Chain-of-Thought for Knowledge-Intensive Tasks in Large Language Models via Causal Intervention
Junda Wu | Tong Yu | Xiang Chen | Haoliang Wang | Ryan Rossi | Sungchul Kim | Anup Rao | Julian McAuley
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) often require task-relevant knowledge to augment their internal knowledge through prompts. However, simply injecting external knowledge into prompts does not guarantee that LLMs can identify and use relevant information in the prompts to conduct chain-of-thought reasoning, especially when the LLM’s internal knowledge is derived from biased information on the pretraining data. In this paper, we propose a novel causal view to formally explain the internal knowledge bias of LLMs via a Structural Causal Model (SCM). We review the chain-of-thought (CoT) prompting from a causal perspective and discover that the biased information from pretrained models can impair LLMs’ reasoning abilities. When the CoT reasoning paths are misled by irrelevant information from prompts and are logically incorrect, simply editing factual information is insufficient to reach the correct answer. To estimate the confounding effect on CoT reasoning in LLMs, we use external knowledge as an instrumental variable. We further introduce CoT as a mediator to conduct front-door adjustment and generate logically correct CoTs where the spurious correlation between LLMs’ pretrained knowledge and task queries is reduced. With extensive experiments, we validate that our approach enables more accurate CoT reasoning and enhances LLM generation on knowledge-intensive tasks.

2023

pdf bib
Federated Domain Adaptation for Named Entity Recognition via Distilling with Heterogeneous Tag Sets
Rui Wang | Tong Yu | Junda Wu | Handong Zhao | Sungchul Kim | Ruiyi Zhang | Subrata Mitra | Ricardo Henao
Findings of the Association for Computational Linguistics: ACL 2023

Federated learning involves collaborative training with private data from multiple platforms, while not violating data privacy. We study the problem of federated domain adaptation for Named Entity Recognition (NER), where we seek to transfer knowledge across different platforms with data of multiple domains. In addition, we consider a practical and challenging scenario, where NER datasets of different platforms of federated learning are annotated with heterogeneous tag sets, i.e., different sets of entity types. The goal is to train a global model with federated learning, such that it can predict with a complete tag set, i.e., with all the occurring entity types for data across all platforms. To cope with the heterogeneous tag sets in a multi-domain setting, we propose a distillation approach along with a mechanism of instance weighting to facilitate knowledge transfer across platforms. Besides, we release two re-annotated clinic NER datasets, for testing the proposed method in the clinic domain. Our method shows superior empirical performance for NER with federated learning.

2022

pdf bib
Context-aware Information-theoretic Causal De-biasing for Interactive Sequence Labeling
Junda Wu | Rui Wang | Tong Yu | Ruiyi Zhang | Handong Zhao | Shuai Li | Ricardo Henao | Ani Nenkova
Findings of the Association for Computational Linguistics: EMNLP 2022

Supervised training of existing deep learning models for sequence labeling relies on large scale labeled datasets. Such datasets are generally created with crowd-source labeling. However, crowd-source labeling for tasks of sequence labeling can be expensive and time-consuming. Further, crowd-source labeling by external annotators may not be appropriate for data that contains user private information. Considering the above limitations of crowd-source labeling, we study interactive sequence labeling that allows training directly with the user feedback, which alleviates the annotation cost and maintains the user privacy. We identify two bias, namely, context bias and feedback bias, by formulating interactive sequence labeling via a Structural Causal Model (SCM). To alleviate the context and feedback bias based on the SCM, we identify the frequent context tokens as confounders in the backdoor adjustment and further propose an entropy-based modulation that is inspired by information theory. entities more sample-efficiently. With extensive experiments, we validate that our approach can effectively alleviate the biases and our models can be efficiently learnt with the user feedback.