Social scientists use surveys to probe the opinions and beliefs of populations, but these methods are slow, costly, and prone to biases. Recent advances in large language models (LLMs) enable the creating of computational representations or “digital twins” of populations that generate human-like responses mimicking the population’s language, styles, and attitudes. We introduce Community-Cross-Instruct, an unsupervised framework for aligning LLMs to online communities to elicit their beliefs. Given a corpus of a community’s online discussions, Community-Cross-Instruct automatically generates instruction-output pairs by an advanced LLM to (1) finetune a foundational LLM to faithfully represent that community, and (2) evaluate the alignment of the finetuned model to the community. We demonstrate the method’s utility in accurately representing political and diet communities on Reddit. Unlike prior methods requiring human-authored instructions, Community-Cross-Instruct generates instructions in a fully unsupervised manner, enhancing scalability and generalization across domains. This work enables cost-effective and automated surveying of diverse online communities.
Large Language Models (LLMs) possess the potential to exert substantial influence on public perceptions and interactions with information. This raises concerns about the societal impact that could arise if the ideologies within these models can be easily manipulated. In this work, we investigate how effectively LLMs can learn and generalize ideological biases from their instruction-tuning data. Our findings reveal a concerning vulnerability: exposure to only a small amount of ideologically driven samples significantly alters the ideology of LLMs. Notably, LLMs demonstrate a startling ability to absorb ideology from one topic and generalize it to even unrelated ones. The ease with which LLMs’ ideologies can be skewed underscores the risks associated with intentionally poisoned training data by malicious actors or inadvertently introduced biases by data annotators. It also emphasizes the imperative for robust safeguards to mitigate the influence of ideological manipulations on LLMs.
Recent advances in NLP have improved our ability to understand the nuanced worldviews of online communities. Existing research focused on probing ideological stances treats liberals and conservatives as separate groups. However, this fails to account for the nuanced views of the organically formed online communities and the connections between them. In this paper, we study discussions of the 2020 U.S. election on Twitter to identify complex interacting communities. Capitalizing on this interconnectedness, we introduce a novel approach that harnesses message passing when finetuning language models (LMs) to probe the nuanced ideologies of these communities. By comparing the responses generated by LMs and real-world survey results, our method shows higher alignment than existing baselines, highlighting the potential of using LMs in revealing complex ideologies within and across interconnected mixed-ideology communities.
Language models (LMs) are known to represent the perspectives of some social groups better than others, which may impact their performance, especially on subjective tasks such as content moderation and hate speech detection. To explore how LMs represent different perspectives, existing research focused on positional alignment, i.e., how closely the models mimic the opinions and stances of different groups, e.g., liberals or conservatives. However, human communication also encompasses emotional and moral dimensions. We define the problem of affective alignment, which measures how LMs’ emotional and moral tone represents those of different groups. By comparing the affect of responses generated by 36 LMs to the affect of Twitter messages written by two ideological groups, we observe significant misalignment of LMs with both ideological groups. This misalignment is larger than the partisan divide in the U.S. Even after steering the LMs towards specific ideological perspectives, the misalignment and liberal tendencies of the model persist, suggesting a systemic bias within LMs.
Supervised classification heavily depends on datasets annotated by humans. However, in subjective tasks such as toxicity classification, these annotations often exhibit low agreement among raters. Annotations have commonly been aggregated by employing methods like majority voting to determine a single ground truth label. In subjective tasks, aggregating labels will result in biased labeling and, consequently, biased models that can overlook minority opinions. Previous studies have shed light on the pitfalls of label aggregation and have introduced a handful of practical approaches to tackle this issue. Recently proposed multi-annotator models, which predict labels individually per annotator, are vulnerable to under-determination for annotators with few samples. This problem is exacerbated in crowdsourced datasets. In this work, we propose Annotator Aware Representations for Texts (AART) for subjective classification tasks. Our approach involves learning representations of annotators, allowing for exploration of annotation behaviors. We show the improvement of our method on metrics that assess the performance on capturing individual annotators’ perspectives. Additionally, we demonstrate fairness metrics to evaluate our model’s equability of performance for marginalized annotators compared to others.
Researchers have raised awareness about the harms of aggregating labels especially in subjective tasks that naturally contain disagreements among human annotators. In this work we show that models that are only provided aggregated labels show low confidence on high-disagreement data instances. While previous studies consider such instances as mislabeled, we argue that the reason the high-disagreement text instances have been hard-to-learn is that the conventional aggregated models underperform in extracting useful signals from subjective tasks. Inspired by recent studies demonstrating the effectiveness of learning from raw annotations, we investigate classifying using Multiple Ground Truth (Multi-GT) approaches. Our experiments show an improvement of confidence for the high-disagreement instances.
Music captioning has gained significant attention in the wake of the rising prominence of streaming media platforms. Traditional approaches often prioritize either the audio or lyrics aspect of the music, inadvertently ignoring the intricate interplay between the two. However, a comprehensive understanding of music necessitates the integration of both these elements. In this study, we delve into this overlooked realm by introducing a method to systematically learn multimodal alignment between audio and lyrics through contrastive learning. This not only recognizes and emphasizes the synergy between audio and lyrics but also paves the way for models to achieve deeper cross-modal coherence, thereby producing high-quality captions. We provide both theoretical and empirical results demonstrating the advantage of the proposed method, which achieves new state-of-the-art on two music captioning datasets.
Stance detection infers a text author’s attitude towards a target. This is challenging when the model lacks background knowledge about the target. Here, we show how background knowledge from Wikipedia can help enhance the performance on stance detection. We introduce Wikipedia Stance Detection BERT (WS-BERT) that infuses the knowledge into stance encoding. Extensive results on three benchmark datasets covering social media discussions and online debates indicate that our model significantly outperforms the state-of-the-art methods on target-specific stance detection, cross-target stance detection, and zero/few-shot stance detection.
Growing polarization of the news media has been blamed for fanning disagreement, controversy and even violence. Early identification of polarized topics is thus an urgent matter that can help mitigate conflict. However, accurate measurement of topic-wise polarization is still an open research challenge. To address this gap, we propose Partisanship-aware Contextualized Topic Embeddings (PaCTE), a method to automatically detect polarized topics from partisan news sources. Specifically, utilizing a language model that has been finetuned on recognizing partisanship of the news articles, we represent the ideology of a news corpus on a topic by corpus-contextualized topic embedding and measure the polarization using cosine distance. We apply our method to a dataset of news articles about the COVID-19 pandemic. Extensive experiments on different news sources and topics demonstrate the efficacy of our method to capture topical polarization, as indicated by its effectiveness of retrieving the most polarized topics.
Dialogue Act (DA) classification is the task of classifying utterances with respect to the function they serve in a dialogue. Existing approaches to DA classification model utterances without incorporating the turn changes among speakers throughout the dialogue, therefore treating it no different than non-interactive written text. In this paper, we propose to integrate the turn changes in conversations among speakers when modeling DAs. Specifically, we learn conversation-invariant speaker turn embeddings to represent the speaker turns in a conversation; the learned speaker turn embeddings are then merged with the utterance embeddings for the downstream task of DA classification. With this simple yet effective mechanism, our model is able to capture the semantics from the dialogue content while accounting for different speaker turns in a conversation. Validation on three benchmark public datasets demonstrates superior performance of our model.