Users of natural language interfaces, frequently powered by Large Language Models (LLMs), must often repeat their full set of preferences each time they make a similar request. We describe an approach to LLM-based dialogue modeling in which persistent user constraints and preferences – collectively termed standing instructions – are provided as additional context for such interfaces. For example, when a user states “I’m hungry”, a previously expressed preference for Persian food can be automatically added to the LLM prompt, influencing the search for relevant restaurants.We develop NLSI, a language-to-program dataset consisting of over 2.4K English dialogues spanning 17 domains, in which each dialogue is paired with a user profile (a set of user-specific standing instructions) and corresponding structured representations (a sequence of API calls). A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue. NLSI contains diverse phenomena, from simple preferences to interdependent instructions such as triggering a hotel search whenever the user is booking tickets to an event. We conduct experiments on NLSI using prompting with large language models and various retrieval approaches, achieving a maximum of 46% exact match on API prediction. Our results demonstrate the challenges in identifying the relevant standing instructions and their interpretation into API calls
The COMET metric has blazed a trail in the machine translation community, given its strong correlation with human judgements of translation quality.Its success stems from being a modified pre-trained multilingual model finetuned for quality assessment.However, it being a machine learning model also gives rise to a new set of pitfalls that may not be widely known. We investigate these unexpected behaviours from three aspects:1) technical: obsolete software versions and compute precision; 2) data: empty content, language mismatch, and translationese at test time as well as distribution and domain biases in training; 3) usage and reporting: multi-reference support and model referencing in the literature. All of these problems imply that COMET scores are not comparable between papers or even technical setups and we put forward our perspective on fixing each issue.Furthermore, we release the sacreCOMET package that can generate a signature for the software and model configuration as well as an appropriate citation.The goal of this work is to help the community make more sound use of the COMET metric.
Automatic machine translation (MT) metrics are widely used to distinguish the quality of machine translation systems across relatively large test sets (system-level evaluation). However, it is unclear if automatic metrics are reliable at distinguishing good translations from bad translations at the sentence level (segment-level evaluation). In this paper, we investigate how useful MT metrics are at detecting the segment-level quality by correlating metrics with how useful the translations are for downstream task. We evaluate the segment-level performance of the most widely used MT metrics (chrF, COMET, BERTScore, etc.) on three downstream cross-lingual tasks (dialogue state tracking, question answering, and semantic parsing). For each task, we only have access to a monolingual task-specific model and a translation model. We calculate the correlation between the metric’s ability to predict a good/bad translation with the success/failure on the final task for the machine translated test sentences. Our experiments demonstrate that all metrics exhibit negligible correlation with the extrinsic evaluation of the downstream outcomes. We also find that the scores provided by neural metrics are not interpretable, in large part due to having undefined ranges. We synthesise our analysis into recommendations for future MT metrics to produce labels rather than scores for more informative interaction between machine translation and multilingual language understanding.
Task-oriented dialogue (ToD) systems have been widely deployed in many industries as they deliver more efficient customer support. These systems are typically constructed for a single domain or language and do not generalise well beyond this. To support work on Natural Language Understanding (NLU) in ToD across multiple languages and domains simultaneously, we constructed Multi3NLU++, a multilingual, multi-intent, multi-domain dataset. Multi3NLU++ extends the English-only NLU++ dataset to include manual translations into a range of high, medium, and low resource languages (Spanish, Marathi, Turkish and Amharic), in two domains (banking and hotels). Because of its multi-intent property, Multi3NLU++ represents complex and natural user goals, and therefore allows us to measure the realistic performance of ToD systems in a varied set of the world’s languages. We use Multi3NLU++ to benchmark state-of-the-art multilingual models for the NLU tasks of intent detection and slot labeling for ToD systems in the multilingual setting. The results demonstrate the challenging nature of the dataset, particularly in the low-resource language setting, offering ample room for future experimentation in multi-domain multilingual ToD setups.
We benchmark the performance of segment-level metrics submitted to WMT 2023 using the ACES Challenge Set (Amrhein et al., 2022). The challenge set consists of 36K examples representing challenges from 68 phenomena and covering 146 language pairs. The phenomena range from simple perturbations at the word/character level to more complex errors based on discourse and real-world knowledge. For each metric, we provide a detailed profile of performance over a range of error categories as well as an overall ACES-Score for quick comparison. We also measure the incremental performance of the metrics submitted to both WMT 2023 and 2022. We find that 1) there is no clear winner among the metrics submitted to WMT 2023, and 2) performance change between the 2023 and 2022 versions of the metrics is highly variable. Our recommendations are similar to those from WMT 2022. Metric developers should focus on: building ensembles of metrics from different design families, developing metrics that pay more attention to the source and rely less on surface-level overlap, and carefully determining the influence of multilingual embeddings on MT evaluation.
As machine translation (MT) metrics improve their correlation with human judgement every year, it is crucial to understand the limitations of these metrics at the segment level. Specifically, it is important to investigate metric behaviour when facing accuracy errors in MT because these can have dangerous consequences in certain contexts (e.g., legal, medical). We curate ACES, a translation accuracy challenge set, consisting of 68 phenomena ranging from simple perturbations at the word/character level to more complex errors based on discourse and real-world knowledge. We use ACES to evaluate a wide range of MT metrics including the submissions to the WMT 2022 metrics shared task and perform several analyses leading to general recommendations for metric developers. We recommend: a) combining metrics with different strengths, b) developing metrics that give more weight to the source and less to surface-level overlap with the reference and c) explicitly modelling additional language-specific information beyond what is available via multilingual embeddings.
Recent progress in task-oriented neural dialogue systems is largely focused on a handful of languages, as annotation of training data is tedious and expensive. Machine translation has been used to make systems multilingual, but this can introduce a pipeline of errors. Another promising solution is using cross-lingual transfer learning through pretrained multilingual models. Existing methods train multilingual models with additional code-mixed task data or refine the cross-lingual representations through parallel ontologies. In this work, we enhance the transfer learning process by intermediate fine-tuning of pretrained multilingual models, where the multilingual models are fine-tuned with different but related data and/or tasks. Specifically, we use parallel and conversational movie subtitles datasets to design cross-lingual intermediate tasks suitable for downstream dialogue tasks. We use only 200K lines of parallel data for intermediate fine-tuning which is already available for 1782 language pairs. We test our approach on the cross-lingual dialogue state tracking task for the parallel MultiWoZ (English -> Chinese, Chinese -> English) and Multilingual WoZ (English -> German, English -> Italian) datasets. We achieve impressive improvements (> 20% on joint goal accuracy) on the parallel MultiWoZ dataset and the Multilingual WoZ dataset over the vanilla baseline with only 10% of the target language task data and zero-shot setup respectively.
We consider the task of generating dialogue responses from background knowledge comprising of domain specific resources. Specifically, given a conversation around a movie, the task is to generate the next response based on background knowledge about the movie such as the plot, review, Reddit comments etc. This requires capturing structural, sequential and semantic information from the conversation context and the background resources. We propose a new architecture that uses the ability of BERT to capture deep contextualized representations in conjunction with explicit structure and sequence information. More specifically, we use (i) Graph Convolutional Networks (GCNs) to capture structural information, (ii) LSTMs to capture sequential information and (iii) BERT for the deep contextualized representations that capture semantic information. We analyze the proposed architecture extensively. To this end, we propose a plug-and-play Semantics-Sequences-Structures (SSS) framework which allows us to effectively combine such linguistic information. Through a series of experiments we make some interesting observations. First, we observe that the popular adaptation of the GCN model for NLP tasks where structural information (GCNs) was added on top of sequential information (LSTMs) performs poorly on our task. This leads us to explore interesting ways of combining semantic and structural information to improve the performance. Second, we observe that while BERT already outperforms other deep contextualized representations such as ELMo, it still benefits from the additional structural information explicitly added using GCNs. This is a bit surprising given the recent claims that BERT already captures structural information. Lastly, the proposed SSS framework gives an improvement of 7.95% on BLUE score over the baseline.
This paper describes the joint submission of the University of Edinburgh and Uppsala University to the WMT’20 chat translation task for both language directions (English-German). We use existing state-of-the-art machine translation models trained on news data and fine-tune them on in-domain and pseudo-in-domain web crawled data. Our baseline systems are transformer-big models that are pre-trained on the WMT’19 News Translation task and fine-tuned on pseudo-in-domain web crawled data and in-domain task data. We also experiment with (i) adaptation using speaker and domain tags and (ii) using different types and amounts of preceding context. We observe that contrarily to expectations, exploiting context degrades the results (and on analysis the data is not highly contextual). However using domain tags does improve scores according to the automatic evaluation. Our final primary systems use domain tags and are ensembles of 4 models, with noisy channel reranking of outputs. Our en-de system was ranked second in the shared task while our de-en system outperformed all the other systems.
There is an increasing demand for goal-oriented conversation systems which can assist users in various day-to-day activities such as booking tickets, restaurant reservations, shopping, etc. Most of the existing datasets for building such conversation systems focus on monolingual conversations and there is hardly any work on multilingual and/or code-mixed conversations. Such datasets and systems thus do not cater to the multilingual regions of the world, such as India, where it is very common for people to speak more than one language and seamlessly switch between them resulting in code-mixed conversations. For example, a Hindi speaking user looking to book a restaurant would typically ask, “Kya tum is restaurant mein ek table book karne mein meri help karoge?” (“Can you help me in booking a table at this restaurant?”). To facilitate the development of such code-mixed conversation models, we build a goal-oriented dialog dataset containing code-mixed conversations. Specifically, we take the text from the DSTC2 restaurant reservation dataset and create code-mixed versions of it in Hindi-English, Bengali-English, Gujarati-English and Tamil-English. We also establish initial baselines on this dataset using existing state of the art models. This dataset along with our baseline implementations will be made publicly available for research purposes.
Existing dialog datasets contain a sequence of utterances and responses without any explicit background knowledge associated with them. This has resulted in the development of models which treat conversation as a sequence-to-sequence generation task (i.e., given a sequence of utterances generate the response sequence). This is not only an overly simplistic view of conversation but it is also emphatically different from the way humans converse by heavily relying on their background knowledge about the topic (as opposed to simply relying on the previous sequence of utterances). For example, it is common for humans to (involuntarily) produce utterances which are copied or suitably modified from background articles they have read about the topic. To facilitate the development of such natural conversation models which mimic the human process of conversing, we create a new dataset containing movie chats wherein each response is explicitly generated by copying and/or modifying sentences from unstructured background knowledge such as plots, comments and reviews about the movie. We establish baseline results on this dataset (90K utterances from 9K conversations) using three different models: (i) pure generation based models which ignore the background knowledge (ii) generation based models which learn to copy information from the background knowledge when required and (iii) span prediction based models which predict the appropriate response span in the background knowledge.