Large language models (LLMs) acquire beliefs about gender from training data and can therefore generate text with stereotypical gender attitudes. Prior studies have demonstrated model generations favor one gender or exhibit stereotypes about gender, but have not investigated the complex dynamics that can influence model reasoning and decision-making involving gender. We study gender equity within LLMs through a decision-making lens with a new dataset, DeMET Prompts, containing scenarios related to intimate, romantic relationships. We explore nine relationship configurations through name pairs across three name lists (men, women, neutral). We investigate equity in the context of gender roles through numerous lenses: typical and gender-neutral names, with and without model safety enhancements, same and mixed-gender relationships, and egalitarian versus traditional scenarios across various topics. While all models exhibit the same biases (women favored, then those with gender-neutral names, and lastly men), safety guardrails reduce bias. In addition, models tend to circumvent traditional male dominance stereotypes and side with “traditionally female” individuals more often, suggesting relationships are viewed as a female domain by the models.
Chat-based large language models have the opportunity to empower individuals lacking high-quality healthcare access to receive personalized information across a variety of topics. However, users may ask underspecified questions that require additional context for a model to correctly answer. We study how large language model biases are exhibited through these contextual questions in the healthcare domain. To accomplish this, we curate a dataset of sexual and reproductive healthcare questions (ContextSRH) that are dependent on age, sex, and location attributes. We compare models’ outputs with and without demographic context to determine answer alignment among our contextual questions. Our experiments reveal biases in each of these attributes, where young adult female users are favored.
Benchmarks of the multilingual capabilities of text-to-image (T2I) models compare generated images prompted in a test language to an expected image distribution over a concept set. One such benchmark, “Conceptual Coverage Across Languages” (CoCo-CroLa), assesses the tangible noun inventory of T2I models by prompting them to generate pictures from a concept list translated to seven languages and comparing the output image populations. Unfortunately, we find that this benchmark contains translation errors of varying severity in Spanish, Japanese, and Chinese. We provide corrections for these errors and analyze how impactful they are on the utility and validity of CoCo-CroLa as a benchmark. We reassess multiple baseline T2I models with the revisions, compare the outputs elicited under the new translations to those conditioned on the old, and show that a correction’s impactfulness on the image-domain benchmark results can be predicted in the text domain with similarity scores. Our findings will guide the future development of T2I multilinguality metrics by providing analytical tools for practical translation decisions.
Open-retrieval question answering systems are generally trained and tested on large datasets in well-established domains. However, low-resource settings such as new and emerging domains would especially benefit from reliable question answering systems. Furthermore, multilingual and cross-lingual resources in emergent domains are scarce, leading to few or no such systems. In this paper, we demonstrate a cross-lingual open-retrieval question answering system for the emergent domain of COVID-19.Our system adopts a corpus of scientific articles to ensure that retrieved documents are reliable. To address the scarcity of cross-lingual training data in emergent domains, we present a method utilizing automatic translation, alignment, and filtering to produce English-to-all datasets. We show that a deep semantic retriever greatly benefits from training on our English-to-all data and significantly outperforms a BM25 baseline in the cross-lingual setting. We illustrate the capabilities of our system with examples and release all code necessary to train and deploy such a system.
Studies in bias and fairness in natural language processing have primarily examined social biases within a single language and/or across few attributes (e.g. gender, race). However, biases can manifest differently across various languages for individual attributes. As a result, it is critical to examine biases within each language and attribute. Of equal importance is to study how these biases compare across languages and how the biases are affected when training a model on multilingual data versus monolingual data. We present a bias analysis across Italian, Chinese, English, Hebrew, and Spanish on the downstream sentiment analysis task to observe whether specific demographics are viewed more positively. We study bias similarities and differences across these languages and investigate the impact of multilingual vs. monolingual training data. We adapt existing sentiment bias templates in English to Italian, Chinese, Hebrew, and Spanish for four attributes: race, religion, nationality, and gender. Our results reveal similarities in bias expression such as favoritism of groups that are dominant in each language’s culture (e.g. majority religions and nationalities). Additionally, we find an increased variation in predictions across protected groups, indicating bias amplification, after multilingual finetuning in comparison to multilingual pretraining.
Users’ physical safety is an increasing concern as the market for intelligent systems continues to grow, where unconstrained systems may recommend users dangerous actions that can lead to serious injury. Covertly unsafe text is an area of particular interest, as such text may arise from everyday scenarios and are challenging to detect as harmful. We propose FARM, a novel framework leveraging external knowledge for trustworthy rationale generation in the context of safety. In particular, FARM foveates on missing knowledge to qualify the information required to reason in specific scenarios and retrieves this information with attribution to trustworthy sources. This knowledge is used to both classify the safety of the original text and generate human-interpretable rationales, shedding light on the risk of systems to specific user groups and helping both stakeholders manage the risks of their systems and policymakers to provide concrete safeguards for consumer safety. Our experiments show that FARM obtains state-of-the-art results on the SafeText dataset, showing absolute improvement in safety classification accuracy by 5.9%.
As large language models are integrated into society, robustness toward a suite of prompts is increasingly important to maintain reliability in a high-variance environment.Robustness evaluations must comprehensively encapsulate the various settings in which a user may invoke an intelligent system. This paper proposes ASSERT, Automated Safety Scenario Red Teaming, consisting of three methods – semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection. For robust safety evaluation, we apply these methods in the critical domain of AI safety to algorithmically generate a test suite of prompts covering diverse robustness settings – semantic equivalence, related scenarios, and adversarial. We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance. Despite dedicated safeguards in existing state-of-the-art models, we find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings, raising concerns for users’ physical safety.
Understanding what constitutes safe text is an important issue in natural language processing and can often prevent the deployment of models deemed harmful and unsafe. One such type of safety that has been scarcely studied is commonsense physical safety, i.e. text that is not explicitly violent and requires additional commonsense knowledge to comprehend that it leads to physical harm. We create the first benchmark dataset, SafeText, comprising real-life scenarios with paired safe and physically unsafe pieces of advice. We utilize SafeText to empirically study commonsense physical safety across various models designed for text generation and commonsense reasoning tasks. We find that state-of-the-art large language models are susceptible to the generation of unsafe text and have difficulty rejecting unsafe advice. As a result, we argue for further studies of safety and the assessment of commonsense physical safety in models before release.
A pressing challenge in current dialogue systems is to successfully converse with users on topics with information distributed across different modalities. Previous work in multiturn dialogue systems has primarily focused on either text or table information. In more realistic scenarios, having a joint understanding of both is critical as knowledge is typically distributed over both unstructured and structured forms. We present a new dialogue dataset, HybriDialogue, which consists of crowdsourced natural conversations grounded on both Wikipedia text and tables. The conversations are created through the decomposition of complex multihop questions into simple, realistic multiturn dialogue interactions. We propose retrieval, system state tracking, and dialogue response generation tasks for our dataset and conduct baseline experiments for each. Our results show that there is still ample opportunity for improvement, demonstrating the importance of building stronger dialogue systems that can reason over the complex setting of informationseeking dialogue grounded on tables and text.
An increasingly prevalent problem for intelligent technologies is text safety, as uncontrolled systems may generate recommendations to their users that lead to injury or life-threatening consequences. However, the degree of explicitness of a generated statement that can cause physical harm varies. In this paper, we distinguish types of text that can lead to physical harm and establish one particularly underexplored category: covertly unsafe text. Then, we further break down this category with respect to the system’s information and discuss solutions to mitigate the generation of text in each of these subcategories. Ultimately, our work defines the problem of covertly unsafe language that causes physical harm and argues that this subtle yet dangerous issue needs to be prioritized by stakeholders and regulators. We highlight mitigation strategies to inspire future researchers to tackle this challenging problem and help improve safety within smart systems.
Women are often perceived as junior to their male counterparts, even within the same job titles. While there has been significant progress in the evaluation of gender bias in natural language processing (NLP), existing studies seldom investigate how biases toward gender groups change when compounded with other societal biases. In this work, we investigate how seniority impacts the degree of gender bias exhibited in pretrained neural generation models by introducing a novel framework for probing compound bias. We contribute a benchmark robustness-testing dataset spanning two domains, U.S. senatorship and professorship, created using a distant-supervision method. Our dataset includes human-written text with underlying ground truth and paired counterfactuals. We then examine GPT-2 perplexity and the frequency of gendered language in generated text. Our results show that GPT-2 amplifies bias by considering women as junior and men as senior more often than the ground truth in both domains. These results suggest that NLP applications built using GPT-2 may harm women in professional capacities.
Broader disclosive transparency—truth and clarity in communication regarding the function of AI systems—is widely considered desirable. Unfortunately, it is a nebulous concept, difficult to both define and quantify. This is problematic, as previous work has demonstrated possible trade-offs and negative consequences to disclosive transparency, such as a confusion effect, where “too much information” clouds a reader’s understanding of what a system description means. Disclosive transparency’s subjective nature has rendered deep study into these problems and their remedies difficult. To improve this state of affairs, We introduce neural language model-based probabilistic metrics to directly model disclosive transparency, and demonstrate that they correlate with user and expert opinions of system transparency, making them a valid objective proxy. Finally, we demonstrate the use of these metrics in a pilot study quantifying the relationships between transparency, confusion, and user perceptions in a corpus of real NLP system descriptions.
Since late 2019, COVID-19 has quickly emerged as the newest biomedical domain, resulting in a surge of new information. As with other emergent domains, the discussion surrounding the topic has been rapidly changing, leading to the spread of misinformation. This has created the need for a public space for users to ask questions and receive credible, scientific answers. To fulfill this need, we turn to the task of open-domain question-answering, which we can use to efficiently find answers to free-text questions from a large set of documents. In this work, we present such a system for the emergent domain of COVID-19. Despite the small data size available, we are able to successfully train the system to retrieve answers from a large-scale corpus of published COVID-19 scientific papers. Furthermore, we incorporate effective re-ranking and question-answering techniques, such as document diversity and multiple answer spans. Our open-domain question-answering system can further act as a model for the quick development of similar systems that can be adapted and modified for other developing emergent domains.
The growth of social media has encouraged the written use of African American Vernacular English (AAVE), which has traditionally been used only in oral contexts. However, NLP models have historically been developed using dominant English varieties, such as Standard American English (SAE), due to text corpora availability. We investigate the performance of GPT-2 on AAVE text by creating a dataset of intent-equivalent parallel AAVE/SAE tweet pairs, thereby isolating syntactic structure and AAVE- or SAE-specific language for each pair. We evaluate each sample and its GPT-2 generated text with pretrained sentiment classifiers and find that while AAVE text results in more classifications of negative sentiment than SAE, the use of GPT-2 generally increases occurrences of positive sentiment for both. Additionally, we conduct human evaluation of AAVE and SAE text generated with GPT-2 to compare contextual rigor and overall quality.
Fake news has altered society in negative ways in politics and culture. It has adversely affected both online social network systems as well as offline communities and conversations. Using automatic machine learning classification models is an efficient way to combat the widespread dissemination of fake news. However, a lack of effective, comprehensive datasets has been a problem for fake news research and detection model development. Prior fake news datasets do not provide multimodal text and image data, metadata, comment data, and fine-grained fake news categorization at the scale and breadth of our dataset. We present Fakeddit, a novel multimodal dataset consisting of over 1 million samples from multiple categories of fake news. After being processed through several stages of review, the samples are labeled according to 2-way, 3-way, and 6-way classification categories through distant supervision. We construct hybrid text+image models and perform extensive experiments for multiple variations of classification, demonstrating the importance of the novel aspect of multimodality and fine-grained classification unique to Fakeddit.
The spread of COVID-19 has become a significant and troubling aspect of society in 2020. With millions of cases reported across countries, new outbreaks have occurred and followed patterns of previously affected areas. Many disease detection models do not incorporate the wealth of social media data that can be utilized for modeling and predicting its spread. It is useful to ask, can we utilize this knowledge in one country to model the outbreak in another? To answer this, we propose the task of cross-lingual transfer learning for epidemiological alignment. Utilizing both macro and micro text features, we train on Italy’s early COVID-19 outbreak through Twitter and transfer to several other countries. Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.