Shirley Anugrah Hayati


2024

pdf bib
Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U)
Sachin Kumar | Vidhisha Balachandran | Chan Young Park | Weijia Shi | Shirley Anugrah Hayati | Yulia Tsvetkov | Noah Smith | Hannaneh Hajishirzi | Dongyeop Kang | David Jurgens
Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U)

pdf bib
How Far Can We Extract Diverse Perspectives from Large Language Models?
Shirley Anugrah Hayati | Minhwa Lee | Dheeraj Rajagopal | Dongyeop Kang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Collecting diverse human opinions is costly and challenging. This leads to a recent trend in exploiting large language models (LLMs) for generating diverse data for potential scalable and efficient solutions. However, the extent to which LLMs can generate diverse perspectives on subjective topics is still unclear. In this study, we explore LLMs’ capacity of generating diverse perspectives and rationales on subjective topics such as social norms and argumentative texts. We introduce the problem of extracting maximum diversity from LLMs. Motivated by how humans form opinions based on values, we propose a criteria-based prompting technique to ground diverse opinions. To see how far we can extract diverse perspectives from LLMs, or called diversity coverage, we employ a step-by-step recall prompting to generate more outputs from the model iteratively. Our methods, applied to various tasks, show that LLMs can indeed produce diverse opinions according to the degree of task subjectivity. We also find that LLMs performance of extracting maximum diversity is on par with human.

2023

pdf bib
StyLEx: Explaining Style Using Human Lexical Annotations
Shirley Anugrah Hayati | Kyumin Park | Dheeraj Rajagopal | Lyle Ungar | Dongyeop Kang
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Large pre-trained language models have achieved impressive results on various style classification tasks, but they often learn spurious domain-specific words to make predictions (Hayati et al., 2021). While human explanation highlights stylistic tokens as important features for this task, we observe that model explanations often do not align with them. To tackle this issue, we introduce StyLEx, a model that learns from human annotated explanations of stylistic features and jointly learns to perform the task and predict these features as model explanations. Our experiments show that StyLEx can provide human like stylistic lexical explanations without sacrificing the performance of sentence-level style prediction on both in-domain and out-of-domain datasets. Explanations from StyLEx show significant improvements in explanation metrics (sufficiency, plausibility) and when evaluated with human annotations. They are also more understandable by human judges compared to the widely-used saliency-based explanation baseline.

pdf bib
Werewolf Among Us: Multimodal Resources for Modeling Persuasion Behaviors in Social Deduction Games
Bolin Lai | Hongxin Zhang | Miao Liu | Aryan Pariani | Fiona Ryan | Wenqi Jia | Shirley Anugrah Hayati | James Rehg | Diyi Yang
Findings of the Association for Computational Linguistics: ACL 2023

Persuasion modeling is a key building block for conversational agents. Existing works in this direction are limited to analyzing textual dialogue corpus. We argue that visual signals also play an important role in understanding human persuasive behaviors. In this paper, we introduce the first multimodal dataset for modeling persuasion behaviors. Our dataset includes 199 dialogue transcriptions and videos captured in a multi-player social deduction game setting, 26,647 utterance level annotations of persuasion strategy, and game level annotations of deduction game outcomes. We provide extensive experiments to show how dialogue context and visual signals benefit persuasion strategy prediction. We also explore the generalization ability of language models for persuasion modeling and the role of persuasion strategies in predicting social deduction game outcomes. Our dataset can be found at https://persuasion-deductiongame. socialai-data.org. The codes and models are available at https://github.com/SALT-NLP/PersuationGames.

2021

pdf bib
Does BERT Learn as Humans Perceive? Understanding Linguistic Styles through Lexica
Shirley Anugrah Hayati | Dongyeop Kang | Lyle Ungar
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

People convey their intention and attitude through linguistic styles of the text that they write. In this study, we investigate lexicon usages across styles throughout two lenses: human perception and machine word importance, since words differ in the strength of the stylistic cues that they provide. To collect labels of human perception, we curate a new dataset, Hummingbird, on top of benchmarking style datasets. We have crowd workers highlight the representative words in the text that makes them think the text has the following styles: politeness, sentiment, offensiveness, and five emotion types. We then compare these human word labels with word importance derived from a popular fine-tuned style classifier like BERT. Our results show that the BERT often finds content words not relevant to the target style as important words used in style prediction, but humans do not perceive the same way even though for some styles (e.g., positive sentiment and joy) human- and machine-identified words share significant overlap for some styles.

2020

pdf bib
INSPIRED: Toward Sociable Recommendation Dialog Systems
Shirley Anugrah Hayati | Dongyeop Kang | Qingxiaoyang Zhu | Weiyan Shi | Zhou Yu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In recommendation dialogs, humans commonly disclose their preference and make recommendations in a friendly manner. However, this is a challenge when developing a sociable recommendation dialog system, due to the lack of dialog dataset annotated with such sociable strategies. Therefore, we present INSPIRED, a new dataset of 1,001 human-human dialogs for movie recommendation with measures for successful recommendations. To better understand how humans make recommendations in communication, we design an annotation scheme related to recommendation strategies based on social science theories and annotate these dialogs. Our analysis shows that sociable recommendation strategies, such as sharing personal opinions or communicating with encouragement, more frequently lead to successful recommendations. Based on our dataset, we train end-to-end recommendation dialog systems with and without our strategy labels. In both automatic and human evaluation, our model with strategy incorporation outperforms the baseline model. This work is a first step for building sociable recommendation dialog systems with a basis of social science theories.

pdf bib
A Summary of the First Workshop on Language Technology for Language Documentation and Revitalization
Graham Neubig | Shruti Rijhwani | Alexis Palmer | Jordan MacKenzie | Hilaria Cruz | Xinjian Li | Matthew Lee | Aditi Chaudhary | Luke Gessler | Steven Abney | Shirley Anugrah Hayati | Antonios Anastasopoulos | Olga Zamaraeva | Emily Prud’hommeaux | Jennette Child | Sara Child | Rebecca Knowles | Sarah Moeller | Jeffrey Micher | Yiyuan Li | Sydney Zink | Mengzhou Xia | Roshan Sharma | Patrick Littell
Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)

Despite recent advances in natural language processing and other language technology, the application of such technology to language documentation and conservation has been limited. In August 2019, a workshop was held at Carnegie Mellon University in Pittsburgh, PA, USA to attempt to bring together language community members, documentary linguists, and technologists to discuss how to bridge this gap and create prototypes of novel and practical language revitalization technologies. The workshop focused on developing technologies to aid language documentation and revitalization in four areas: 1) spoken language (speech transcription, phone to orthography decoding, text-to-speech and text-speech forced alignment), 2) dictionary extraction and management, 3) search tools for corpora, and 4) social media (language learning bots and social media analysis). This paper reports the results of this workshop, including issues discussed, and various conceived and implemented technologies for nine languages: Arapaho, Cayuga, Inuktitut, Irish Gaelic, Kidaw’ida, Kwak’wala, Ojibwe, San Juan Quiahije Chatino, and Seneca.

2019

pdf bib
What A Sunny Day ☔: Toward Emoji-Sensitive Irony Detection
Shirley Anugrah Hayati | Aditi Chaudhary | Naoki Otani | Alan W Black
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

Irony detection is an important task with applications in identification of online abuse and harassment. With the ubiquitous use of non-verbal cues such as emojis in social media, in this work we aim to study the role of these structures in irony detection. Since the existing irony detection datasets have <10% ironic tweets with emoji, classifiers trained on them are insensitive to emojis. We propose an automated pipeline for creating a more balanced dataset.

pdf bib
Analyzing Incorporation of Emotion in Emoji Prediction
Shirley Anugrah Hayati | Aldrian Obaja Muis
Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

In this work, we investigate the impact of incorporating emotion classes on the task of predicting emojis from Twitter texts. More specifically, we first show that there is a correlation between the emotion expressed in the text and the emoji choice of Twitter users. Based on this insight we propose a few simple methods to incorporate emotion information in traditional classifiers. Through automatic metrics, human evaluation, and error analysis, we show that the improvement obtained by incorporating emotion is significant and correlate better with human preferences compared to the baseline models. Through the human ratings that we obtained, we also argue for preference metric to better evaluate the usefulness of an emoji prediction system.

2018

pdf bib
Retrieval-Based Neural Code Generation
Shirley Anugrah Hayati | Raphael Olivier | Pravalika Avvaru | Pengcheng Yin | Anthony Tomasic | Graham Neubig
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In models to generate program source code from natural language, representing this code in a tree structure has been a common approach. However, existing methods often fail to generate complex code correctly due to a lack of ability to memorize large and complex structures. We introduce RECODE, a method based on subtree retrieval that makes it possible to explicitly reference existing code examples within a neural code generation model. First, we retrieve sentences that are similar to input sentences using a dynamic-programming-based sentence similarity scoring method. Next, we extract n-grams of action sequences that build the associated abstract syntax tree. Finally, we increase the probability of actions that cause the retrieved n-gram action subtree to be in the predicted code. We show that our approach improves the performance on two code generation tasks by up to +2.6 BLEU.