2024
pdf
bib
abs
Teaching Small Language Models Reasoning through Counterfactual Distillation
Tao Feng
|
Yicheng Li
|
Li Chenglin
|
Hao Chen
|
Fei Yu
|
Yin Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
With the rise of large language models (LLMs), many studies are interested in transferring the reasoning capabilities of LLMs to small language models (SLMs). Previous distillation methods usually utilize the capabilities of LLMs to generate chain-of-thought (CoT) samples and teach SLMs via fine-tuning. However, such a standard distillation approach performs poorly when applied to out-of-distribution (OOD) examples, and the diversity of the generated CoT samples is insufficient. In this work, we propose a novel counterfactual distillation framework. Firstly, we leverage LLMs to automatically generate high-quality counterfactual data. Given an input text example, our method generates a counterfactual example that is very similar to the original input, but its task label has been changed to the desired one. Then, we utilize multi-view CoT to enhance the diversity of reasoning samples. Experiments on four NLP benchmarks show that our approach enhances the reasoning capabilities of SLMs and is more robust to OOD data. We also conduct extensive ablations and sample studies to understand the reasoning capabilities of SLMs.
pdf
bib
abs
Arxiv Copilot: A Self-Evolving and Efficient LLM System for Personalized Academic Assistance
Guanyu Lin
|
Tao Feng
|
Pengrui Han
|
Ge Liu
|
Jiaxuan You
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
As scientific research proliferates, researchers face the daunting task of navigating and reading vast amounts of literature. Existing solutions, such as document QA, fail to provide personalized and up-to-date information efficiently. We present Arxiv Copilot, a self-evolving, efficient LLM system designed to assist researchers, based on thought-retrieval, user profile and high performance optimization. Specifically, Arxiv Copilot can offer personalized research services, maintaining a real-time updated database. Quantitative evaluation demonstrates that Arxiv Copilot saves 69.92% of time after efficient deployment. This paper details the design and implementation of Arxiv Copilot, highlighting its contributions to personalized academic support and its potential to streamline the research process. We have deployed Arxiv Copilot at: https://huggingface.co/spaces/ulab-ai/ArxivCopilot.
pdf
bib
abs
Let’s Negotiate! A Survey of Negotiation Dialogue Systems
Haolan Zhan
|
Yufei Wang
|
Zhuang Li
|
Tao Feng
|
Yuncheng Hua
|
Suraj Sharma
|
Lizhen Qu
|
Zhaleh Semnani Azad
|
Ingrid Zukerman
|
Reza Haf
Findings of the Association for Computational Linguistics: EACL 2024
Negotiation is a crucial ability in human communication. Recently, there has been a resurgent research interest in negotiation dialogue systems, whose goal is to create intelligent agents that can assist people in resolving conflicts or reaching agreements. Although there have been many explorations into negotiation dialogue systems, a systematic review of this task has not been performed to date. We aim to fill this gap by investigating recent studies in the field of negotiation dialogue systems, and covering benchmarks, evaluations and methodologies within the literature. We also discuss potential future directions, including multi-modal, multi-party and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.
pdf
bib
abs
RENOVI: A Benchmark Towards Remediating Norm Violations in Socio-Cultural Conversations
Haolan Zhan
|
Zhuang Li
|
Xiaoxi Kang
|
Tao Feng
|
Yuncheng Hua
|
Lizhen Qu
|
Yi Ying
|
Mei Rianto Chandra
|
Kelly Rosalin
|
Jureynolds Jureynolds
|
Suraj Sharma
|
Shilin Qu
|
Linhao Luo
|
Ingrid Zukerman
|
Lay-Ki Soon
|
Zhaleh Semnani Azad
|
Reza Haf
Findings of the Association for Computational Linguistics: NAACL 2024
Norm violations occur when individuals fail to conform to culturally accepted behaviors, which may lead to potential conflicts. Remediating norm violations requires social awareness and cultural sensitivity of the nuances at play. To equip interactive AI systems with a remediation ability, we offer ReNoVi — a large-scale corpus of 9,258 multi-turn dialogues annotated with social norms, as well as define a sequence of tasks to help understand and remediate norm violations step by step. ReNoVi consists of two parts: 512 human-authored dialogues (real data), and 8,746 synthetic conversations generated by ChatGPT through prompt learning. While collecting sufficient human-authored data is costly, synthetic conversations provide suitable amounts of data to help mitigate the scarcity of training data, as well as the chance to assess the alignment between LLMs and humans in the awareness of social norms. We thus harness the power of ChatGPT to generate synthetic training data for our task. To ensure the quality of both human-authored and synthetic data, we follow a quality control protocol during data collection. Our experimental results demonstrate the importance of remediating norm violations in socio-cultural conversations, as well as the improvement in performance obtained from synthetic data.
pdf
bib
abs
Causal Discovery Inspired Unsupervised Domain Adaptation for Emotion-Cause Pair Extraction
Yuncheng Hua
|
Yujin Huang
|
Shuo Huang
|
Tao Feng
|
Lizhen Qu
|
Christopher Bain
|
Richard Bassed
|
Reza Haf
Findings of the Association for Computational Linguistics: EMNLP 2024
This paper tackles the task of emotion-cause pair extraction in the unsupervised domain adaptation setting.The problem is challenging as the distributions of the events causing emotions in target domains are dramatically different than those in source domains, despite the distributions of emotional expressions between domains are overlapped. Inspired by causal discovery,we propose a novel deep latent model in the variational autoencoder (VAE) framework, which not only captures the underlying latent structures of data but also utilizes the easily transferable knowledge of emotions as the bridge to link the distributions of events in different domains. To facilitate knowledge transfer across domains, we also propose a novel variational posterior regularization technique to disentangle the latent representations of emotions from those of events in order to mitigate the damage caused by the spurious correlations related to the events in source domains. Through extensive experiments, we demonstrate that our model outperforms the strongest baseline by approximately 11.05% on a Chinese benchmark and 2.45% on a English benchmark in terms of weighted-average F1 score. We have released our source code and the generated dataset publicly at: https://github.com/tk1363704/CAREL-VAE.
pdf
bib
abs
IMO: Greedy Layer-Wise Sparse Representation Learning for Out-of-Distribution Text Classification with Pre-trained Models
Tao Feng
|
Lizhen Qu
|
Zhuang Li
|
Haolan Zhan
|
Yuncheng Hua
|
Reza Haf
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Machine learning models have made incredible progress, but they still struggle when applied to examples from unseen domains. This study focuses on a specific problem of domain generalization, where a model is trained on one source domain and tested on multiple target domains that are unseen during training. We propose IMO: Invariant features Masks for Out-of-Distribution text classification, to achieve OOD generalization by learning invariant features. During training, IMO would learn sparse mask layers to remove irrelevant features for prediction, where the remaining features keep invariant. Additionally, IMO has an attention module at the token level to focus on tokens that are useful for prediction. Our comprehensive experiments show that IMO substantially outperforms strong baselines in terms of various evaluation metrics and settings.
2023
pdf
bib
abs
Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue Response Generation Models by Causal Discovery
Tao Feng
|
Lizhen Qu
|
Gholamreza Haffari
Transactions of the Association for Computational Linguistics, Volume 11
In this paper, we conduct the first study on spurious correlations for open-domain response generation models based on a corpus CGDialog curated by ourselves. The current models indeed suffer from spurious correlations and have a tendency to generate irrelevant and generic responses. Inspired by causal discovery algorithms, we propose a novel model-agnostic method for training and inference using a conditional independence classifier. The classifier is trained by a constrained self-training method, coined ConSTrain, to overcome data sparsity. The experimental results based on both human and automatic evaluation show that our method significantly outperforms the competitive baselines in terms of relevance, informativeness, and fluency.