Yafu Li


2024

pdf bib
Spotting AI’s Touch: Identifying LLM-Paraphrased Spans in Text
Yafu Li | Zhilin Wang | Leyang Cui | Wei Bi | Shuming Shi | Yue Zhang
Findings of the Association for Computational Linguistics: ACL 2024

AI-generated text detection has attracted increasing attention as powerful language models approach human-level generation. Limited work is devoted to detecting (partially) AI-paraphrased texts. However, AI paraphrasing is commonly employed in various application scenarios for text refinement and diversity. To this end, we propose a novel detection framework, paraphrased text span detection (PTD), aiming to identify paraphrased text spans within a text. Different from text-level detection, PTD takes in the full text and assigns each of the sentences with a score indicating the paraphrasing degree. We construct a dedicated dataset, PASTED, for paraphrased text span detection. Both in-distribution and out-of-distribution results demonstrate the effectiveness of PTD models in identifying AI-paraphrased text spans. Statistical and model analysis explains the crucial role of the surrounding context of the paraphrased text spans. Extensive experiments show that PTD models can generalize to versatile paraphrasing prompts as well as multiple paraphrased text spans.

pdf bib
What Have We Achieved on Non-autoregressive Translation?
Yafu Li | Huajian Zhang | Jianhao Yan | Yongjing Yin | Yue Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Recent advances have made non-autoregressive (NAT) translation comparable to autoregressive methods (AT). However, their evaluation using BLEU has been shown to weakly correlate with human annotations. Limited research compares non-autoregressive translation and autoregressive translation comprehensively, leaving uncertainty about the true proximity of NAT to AT. To address this gap, we systematically evaluate four representative NAT methods across various dimensions, including human evaluation. Our empirical results demonstrate that despite narrowing the performance gap, state-of-the-art NAT still underperforms AT under more reliable evaluation metrics. Furthermore, we discover that explicitly modeling dependencies is crucial for generating natural language and generalizing to out-of-distribution sequences.

pdf bib
LexMatcher: Dictionary-centric Data Curation for LLM-based Machine Translation
Yongjing Yin | Jiali Zeng | Yafu Li | Fandong Meng | Yue Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

The fine-tuning of open-source large language models (LLMs) for machine translation has recently received considerable attention, marking a shift towards data-centric research from traditional neural machine translation. However, the area of data collection for instruction fine-tuning in machine translation remains relatively underexplored. In this paper, we present LexMatcher, a simple yet effective method for data curation,the design of which is driven by the coverage of senses found in bilingual dictionaries. The construction process comprises data retrieval from an existing corpus and data augmentation that supplements the infrequent senses of polysemous words. Utilizing LLaMA2 as our base model, our method outperforms the established baselines on the WMT2022 test sets and also exhibits remarkable performance in tasks related to word sense disambiguation and specialized terminology translation. Our method is also applicable to other pre-trained models, and complements the method of continual pre-training using monolingual data, demonstrating the effectiveness of LexMatcher in enhancing LLM-based machine translation.

pdf bib
MAGE: Machine-generated Text Detection in the Wild
Yafu Li | Qintong Li | Leyang Cui | Wei Bi | Zhilin Wang | Longyue Wang | Linyi Yang | Shuming Shi | Yue Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective deepfake text detection to mitigate risks like the spread of fake news and plagiarism. Existing research has been constrained by evaluating detection methods o specific domains or particular language models. In practical scenarios, however, the detector faces texts from various domains or LLMs without knowing their sources. To this end, we build a comprehensive testbed by gathering texts from diverse human writings and deepfake texts generated by different LLMs. Empirical results on mainstream detection methods demonstrate the difficulties associated with detecting deepfake text in a wide-ranging testbed, particularly in out-of-distribution scenarios. Such difficulties align with the diminishing linguistic differences between the two text sources. Despite challenges, the top-performing detector can identify 84.12% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.

2023

pdf bib
Consistency Regularization Training for Compositional Generalization
Yongjing Yin | Jiali Zeng | Yafu Li | Fandong Meng | Jie Zhou | Yue Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Existing neural models have difficulty generalizing to unseen combinations of seen components. To achieve compositional generalization, models are required to consistently interpret (sub)expressions across contexts. Without modifying model architectures, we improve the capability of Transformer on compositional generalization through consistency regularization training, which promotes representation consistency across samples and prediction consistency for a single sample. Experimental results on semantic parsing and machine translation benchmarks empirically demonstrate the effectiveness and generality of our method. In addition, we find that the prediction consistency scores on in-distribution validation sets can be an alternative for evaluating models during training, when commonly-used metrics are not informative.

pdf bib
Revisiting Cross-Lingual Summarization: A Corpus-based Study and A New Benchmark with Improved Annotation
Yulong Chen | Huajian Zhang | Yijie Zhou | Xuefeng Bai | Yueguan Wang | Ming Zhong | Jianhao Yan | Yafu Li | Judy Li | Xianchao Zhu | Yue Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Most existing cross-lingual summarization (CLS) work constructs CLS corpora by simply and directly translating pre-annotated summaries from one language to another, which can contain errors from both summarization and translation processes. To address this issue, we propose ConvSumX, a cross-lingual conversation summarization benchmark, through a new annotation schema that explicitly considers source input context. ConvSumX consists of 2 sub-tasks under different real-world scenarios, with each covering 3 language directions. We conduct thorough analysis on ConvSumX and 3 widely-used manually annotated CLS corpora and empirically find that ConvSumX is more faithful towards input text. Additionally, based on the same intuition, we propose a 2-Step method, which takes both conversation and summary as input to simulate human annotation process. Experimental results show that 2-Step method surpasses strong baselines on ConvSumX under both automatic and human evaluation. Analysis shows that both source input text and summary are crucial for modeling cross-lingual summaries.

pdf bib
Explicit Syntactic Guidance for Neural Text Generation
Yafu Li | Leyang Cui | Jianhao Yan | Yongjing Yin | Wei Bi | Shuming Shi | Yue Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Most existing text generation models follow the sequence-to-sequence paradigm. Generative Grammar suggests that humans generate natural language texts by learning language grammar. We propose a syntax-guided generation schema, which generates the sequence guided by a constituency parse tree in a top-down direction. The decoding process can be decomposed into two parts: (1) predicting the infilling texts for each constituent in the lexicalized syntax context given the source sentence; (2) mapping and expanding each constituent to construct the next-level syntax context. Accordingly, we propose a structural beam search method to find possible syntax structures hierarchically. Experiments on paraphrase generation and machine translation show that the proposed method outperforms autoregressive baselines, while also demonstrating effectiveness in terms of interpretability, controllability, and diversity.

pdf bib
GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-Distribution Generalization Perspective
Linyi Yang | Shuibai Zhang | Libo Qin | Yafu Li | Yidong Wang | Hanmeng Liu | Jindong Wang | Xing Xie | Yue Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase. However, the out-of-distribution (OOD) generalization problem remains a challenge in many NLP tasks, limiting the real-world deployment of these methods. This paper presents the first attempt at creating a unified benchmark named GLUE-X for evaluating OOD robustness in NLP models, highlighting the importance of OOD robustness and providing insights on how to measure the robustness of a model and how to improve it. The benchmark includes 13 publicly available datasets for OOD testing, and evaluations are conducted on 8 classic NLP tasks over 21 popularly used PLMs. Our findings confirm the need for improved OOD accuracy in NLP tasks, as significant performance degradation was observed in all settings compared to in-distribution (ID) accuracy.

2022

pdf bib
Multi-Granularity Optimization for Non-Autoregressive Translation
Yafu Li | Leyang Cui | Yongjing Yin | Yue Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Despite low latency, non-autoregressive machine translation (NAT) suffers severe performance deterioration due to the naive independence assumption. This assumption is further strengthened by cross-entropy loss, which encourages a strict match between the hypothesis and the reference token by token. To alleviate this issue, we propose multi-granularity optimization for NAT, which collects model behaviours on translation segments of various granularities and integrates feedback for backpropagation. Experiments on four WMT benchmarks show that the proposed method significantly outperforms the baseline models trained with cross-entropy loss, and achieves the best performance on WMT’16 En⇔Ro and highly competitive results on WMT’14 En⇔De for fully non-autoregressive translation.

pdf bib
Prompt-Driven Neural Machine Translation
Yafu Li | Yongjing Yin | Jing Li | Yue Zhang
Findings of the Association for Computational Linguistics: ACL 2022

Neural machine translation (NMT) has obtained significant performance improvement over the recent years. However, NMT models still face various challenges including fragility and lack of style flexibility. Moreover, current methods for instance-level constraints are limited in that they are either constraint-specific or model-specific. To this end, we propose prompt-driven neural machine translation to incorporate prompts for enhancing translation control and enriching flexibility. Empirical results demonstrate the effectiveness of our method in both prompt responding and translation quality. Through human evaluation, we further show the flexibility of prompt control and the efficiency in human-in-the-loop translation.

pdf bib
Categorizing Semantic Representations for Neural Machine Translation
Yongjing Yin | Yafu Li | Fandong Meng | Jie Zhou | Yue Zhang
Proceedings of the 29th International Conference on Computational Linguistics

Modern neural machine translation (NMT) models have achieved competitive performance in standard benchmarks. However, they have recently been shown to suffer limitation in compositional generalization, failing to effectively learn the translation of atoms (e.g., words) and their semantic composition (e.g., modification) from seen compounds (e.g., phrases), and thus suffering from significantly weakened translation performance on unseen compounds during inference. We address this issue by introducing categorization to the source contextualized representations. The main idea is to enhance generalization by reducing sparsity and overfitting, which is achieved by finding prototypes of token representations over the training set and integrating their embeddings into the source encoding. Experiments on a dedicated MT dataset (i.e., CoGnition) show that our method reduces compositional generalization error rates by 24% error reduction. In addition, our conceptually simple method gives consistently better results than the Transformer baseline on a range of general MT datasets.

2021

pdf bib
On Compositional Generalization of Neural Machine Translation
Yafu Li | Yongjing Yin | Yulong Chen | Yue Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Modern neural machine translation (NMT) models have achieved competitive performance in standard benchmarks such as WMT. However, there still exist significant issues such as robustness, domain generalization, etc. In this paper, we study NMT models from the perspective of compositional generalization by building a benchmark dataset, CoGnition, consisting of 216k clean and consistent sentence pairs. We quantitatively analyze effects of various factors using compound translation error rate, then demonstrate that the NMT model fails badly on compositional generalization, although it performs remarkably well under traditional metrics.