Yao Lu


2024

pdf bib
Words Worth a Thousand Pictures: Measuring and Understanding Perceptual Variability in Text-to-Image Generation
Raphael Tang | Crystina Zhang | Lixinyu Xu | Yao Lu | Wenyan Li | Pontus Stenetorp | Jimmy Lin | Ferhan Ture
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Diffusion models are the state of the art in text-to-image generation, but their perceptual variability remains understudied. In this paper, we examine how prompts affect image variability in black-box diffusion-based models. We propose W1KP, a human-calibrated measure of variability in a set of images, bootstrapped from existing image-pair perceptual distances. Current datasets do not cover recent diffusion models, thus we curate three test sets for evaluation. Our best perceptual distance outperforms nine baselines by up to 18 points in accuracy, and our calibration matches graded human judgements 78% of the time. Using W1KP, we study prompt reusability and show that Imagen prompts can be reused for 10-50 random seeds before new images become too similar to already generated images, while Stable Diffusion XL and DALL-E 3 can be reused 50-200 times. Lastly, we analyze 56 linguistic features of real prompts, finding that the prompt’s length, CLIP embedding norm, concreteness, and word senses influence variability most. As far as we are aware, we are the first to analyze diffusion variability from a visuolinguistic perspective. Our project page is at http://w1kp.com.

pdf bib
Strings from the Library of Babel: Random Sampling as a Strong Baseline for Prompt Optimisation
Yao Lu | Jiayi Wang | Raphael Tang | Sebastian Riedel | Pontus Stenetorp
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Recent prompt optimisation approaches use the generative nature of language models to produce prompts – even rivaling the performance of human-curated prompts. In this paper, we demonstrate that randomly sampling tokens from the model vocabulary as “separators” can be as effective as language models for prompt-style text classification. Our experiments show that random separators are competitive baselines, having less than a 1% difference compared to previous self-optimisation methods and showing a 12% average relative improvement over strong human baselines across nine text classification tasks and eight language models. We further analyse this phenomenon in detail using three different random generation strategies, establishing that the language space is rich with potentially good separators, with a greater than 40% average chance that a randomly drawn separator performs better than human-curated separators. These observations challenge the common assumption that an effective prompt should be human readable or task relevant and establish a strong baseline for prompt optimisation research.

pdf bib
AfriMTE and AfriCOMET: Enhancing COMET to Embrace Under-resourced African Languages
Jiayi Wang | David Adelani | Sweta Agrawal | Marek Masiak | Ricardo Rei | Eleftheria Briakou | Marine Carpuat | Xuanli He | Sofia Bourhim | Andiswa Bukula | Muhidin Mohamed | Temitayo Olatoye | Tosin Adewumi | Hamam Mokayed | Christine Mwase | Wangui Kimotho | Foutse Yuehgoh | Anuoluwapo Aremu | Jessica Ojo | Shamsuddeen Muhammad | Salomey Osei | Abdul-Hakeem Omotayo | Chiamaka Chukwuneke | Perez Ogayo | Oumaima Hourrane | Salma El Anigri | Lolwethu Ndolela | Thabiso Mangwana | Shafie Mohamed | Hassan Ayinde | Oluwabusayo Awoyomi | Lama Alkhaled | Sana Al-azzawi | Naome Etori | Millicent Ochieng | Clemencia Siro | Njoroge Kiragu | Eric Muchiri | Wangari Kimotho | Toadoum Sari Sakayo | Lyse Naomi Wamba | Daud Abolade | Simbiat Ajao | Iyanuoluwa Shode | Ricky Macharm | Ruqayya Iro | Saheed Abdullahi | Stephen Moore | Bernard Opoku | Zainab Akinjobi | Abeeb Afolabi | Nnaemeka Obiefuna | Onyekachi Ogbu | Sam Ochieng’ | Verrah Otiende | Chinedu Mbonu | Yao Lu | Pontus Stenetorp
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Despite the recent progress on scaling multilingual machine translation (MT) to several under-resourced African languages, accurately measuring this progress remains challenging, since evaluation is often performed on n-gram matching metrics such as BLEU, which typically show a weaker correlation with human judgments. Learned metrics such as COMET have higher correlation; however, the lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with simplified MQM guidelines for error detection and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET: COMET evaluation metrics for African languages by leveraging DA data from well-resourced languages and an African-centric multilingual encoder (AfroXLM-R) to create the state-of-the-art MT evaluation metrics for African languages with respect to Spearman-rank correlation with human judgments (0.441).

2022

pdf bib
Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity
Yao Lu | Max Bartolo | Alastair Moore | Sebastian Riedel | Pontus Stenetorp
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

When primed with only a handful of training samples, very large, pretrained language models such as GPT-3 have shown competitive results when compared to fully-supervised, fine-tuned, large, pretrained language models. We demonstrate that the order in which the samples are provided can make the difference between near state-of-the-art and random guess performance: essentially some permutations are “fantastic” and some not. We analyse this phenomenon in detail, establishing that: it is present across model sizes (even for the largest current models), it is not related to a specific subset of samples, and that a given good permutation for one model is not transferable to another. While one could use a development set to determine which permutations are performant, this would deviate from the true few-shot setting as it requires additional annotated data. Instead, we use the generative nature of language models to construct an artificial development set and based on entropy statistics of the candidate permutations on this set, we identify performant prompts. Our method yields a 13% relative improvement for GPT-family models across eleven different established text classification tasks.

2020

pdf bib
Discrete Optimization for Unsupervised Sentence Summarization with Word-Level Extraction
Raphael Schumann | Lili Mou | Yao Lu | Olga Vechtomova | Katja Markert
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Automatic sentence summarization produces a shorter version of a sentence, while preserving its most important information. A good summary is characterized by language fluency and high information overlap with the source sentence. We model these two aspects in an unsupervised objective function, consisting of language modeling and semantic similarity metrics. We search for a high-scoring summary by discrete optimization. Our proposed method achieves a new state-of-the art for unsupervised sentence summarization according to ROUGE scores. Additionally, we demonstrate that the commonly reported ROUGE F1 metric is sensitive to summary length. Since this is unwillingly exploited in recent work, we emphasize that future evaluation should explicitly group summarization systems by output length brackets.

pdf bib
Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles
Yao Lu | Yue Dong | Laurent Charlin
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Multi-document summarization is a challenging task for which there exists little large-scale datasets. We propose Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles. Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section of a paper based on its abstract and the articles it references. Our work is inspired by extreme summarization, a dataset construction protocol that favours abstractive modeling approaches. Descriptive statistics and empirical results—using several state-of-the-art models trained on the Multi-XScience dataset—reveal that Multi-XScience is well suited for abstractive models.

2019

pdf bib
Natural Language Generation for Effective Knowledge Distillation
Raphael Tang | Yao Lu | Jimmy Lin
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

Knowledge distillation can effectively transfer knowledge from BERT, a deep language representation model, to traditional, shallow word embedding-based neural networks, helping them approach or exceed the quality of other heavyweight language representation models. As shown in previous work, critical to this distillation procedure is the construction of an unlabeled transfer dataset, which enables effective knowledge transfer. To create transfer set examples, we propose to sample from pretrained language models fine-tuned on task-specific text. Unlike previous techniques, this directly captures the purpose of the transfer set. We hypothesize that this principled, general approach outperforms rule-based techniques. On four datasets in sentiment classification, sentence similarity, and linguistic acceptability, we show that our approach improves upon previous methods. We outperform OpenAI GPT, a deep pretrained transformer, on three of the datasets, while using a single-layer bidirectional LSTM that runs at least ten times faster.

2016

pdf bib
Detecting “Smart” Spammers on Social Network: A Topic Model Approach
Linqing Liu | Yao Lu | Ye Luo | Renxian Zhang | Laurent Itti | Jianwei Lu
Proceedings of the NAACL Student Research Workshop