Data plays a fundamental role in the training of Large Language Models (LLMs). While attention has been paid to the collection and composition of datasets, determining the data sampling strategy in training remains an open question. Most LLMs are trained with a simple strategy, random sampling. However, this sampling strategy ignores the unbalanced nature of training data distribution, which can be sub-optimal. In this paper, we propose ClusterClip Sampling to balance the text distribution of training data for better model training. Specifically, ClusterClip Sampling utilizes data clustering to reflect the data distribution of the training set and balances the common samples and rare samples during training based on the cluster results. A repetition clip operation is introduced to mitigate the overfitting issue led by samples from certain clusters. Extensive experiments validate the effectiveness of ClusterClip Sampling, which outperforms random sampling and other cluster-based sampling variants under various training datasets and large language models.
In Retrieval-Augmented Generation (RAG), retrieval is not always helpful and applying it to every instruction is sub-optimal. Therefore, determining whether to retrieve is crucial for RAG, which is usually referred to as Active Retrieval. However, existing active retrieval methods face two challenges: 1. They usually rely on a single criterion, which struggles with handling various types of instructions. 2. They depend on specialized and highly differentiated procedures, and thus combining them makes the RAG system more complicated and leads to higher response latency. To address these challenges, we propose Unified Active Retrieval (UAR). UAR contains four orthogonal criteria and casts them into plug-and-play classification tasks, which achieves multifaceted retrieval timing judgements with negligible extra inference cost. We further introduce the Unified Active Retrieval Criteria (UAR-Criteria), designed to process diverse active retrieval scenarios through a standardized procedure. Experiments on four representative types of user instructions show that UAR significantly outperforms existing work on the retrieval timing judgement and the performance of downstream tasks, which shows the effectiveness of UAR and its helpfulness to downstream tasks.
Large language models (LLMs) can be used to serve as agents to simulate human behaviors, given the powerful ability to understand human instructions and provide high-quality generated texts. Such ability stimulates us to wonder whether LLMs can simulate a person in a higher form than simple human behaviors. Therefore, we aim to train an agent with the profile, experience, and emotional states of a specific person instead of using limited prompts to instruct ChatGPT API. In this work, we introduce Character-LLM that teach LLMs to act as specific people such as Beethoven, Queen Cleopatra, Julius Caesar, etc. Our method focuses on editing profiles as experiences of a certain character and training models to be personal simulacra with these experiences. To assess the effectiveness of our approach, we build a test playground that interviews trained agents and evaluates whether the agents memorize their characters and experiences. Experimental results show interesting observations that help build future simulacra of humankind.
With the rapid development of neural network applications in NLP, model robustness problem is gaining more attention. Different from computer vision, the discrete nature of texts makes it more challenging to explore robustness in NLP. Therefore, in this paper, we aim to connect discrete perturbations with continuous perturbations, therefore we can use such connections as a bridge to help understand discrete perturbations in NLP models. Specifically, we first explore how to connect and measure the correlation between discrete perturbations and continuous perturbations. Then we design a regression task as a PerturbScore to learn the correlation automatically. Through experimental results, we find that we can build a connection between discrete and continuous perturbations and use the proposed PerturbScore to learn such correlation, surpassing previous methods used in discrete perturbation measuring. Further, the proposed PerturbScore can be well generalized to different datasets, perturbation methods, indicating that we can use it as a powerful tool to study model robustness in NLP.
Both performance and efficiency are crucial factors for sequence labeling tasks in many real-world scenarios. Although the pre-trained models (PTMs) have significantly improved the performance of various sequence labeling tasks, their computational cost is expensive. To alleviate this problem, we extend the recent successful early-exit mechanism to accelerate the inference of PTMs for sequence labeling tasks. However, existing early-exit mechanisms are specifically designed for sequence-level tasks, rather than sequence labeling. In this paper, we first propose a simple extension of sentence-level early-exit for sequence labeling tasks. To further reduce the computational cost, we also propose a token-level early-exit mechanism that allows partial tokens to exit early at different layers. Considering the local dependency inherent in sequence labeling, we employed a window-based criterion to decide for a token whether or not to exit. The token-level early-exit brings the gap between training and inference, so we introduce an extra self-sampling fine-tuning stage to alleviate it. The extensive experiments on three popular sequence labeling tasks show that our approach can save up to 66%∼75% inference cost with minimal performance degradation. Compared with competitive compressed models such as DistilBERT, our approach can achieve better performance under the same speed-up ratios of 2×, 3×, and 4×.
With the emerging branch of incorporating factual knowledge into pre-trained language models such as BERT, most existing models consider shallow, static, and separately pre-trained entity embeddings, which limits the performance gains of these models. Few works explore the potential of deep contextualized knowledge representation when injecting knowledge. In this paper, we propose the Contextualized Language and Knowledge Embedding (CoLAKE), which jointly learns contextualized representation for both language and knowledge with the extended MLM objective. Instead of injecting only entity embeddings, CoLAKE extracts the knowledge context of an entity from large-scale knowledge bases. To handle the heterogeneity of knowledge context and language context, we integrate them in a unified data structure, word-knowledge graph (WK graph). CoLAKE is pre-trained on large-scale WK graphs with the modified Transformer encoder. We conduct experiments on knowledge-driven tasks, knowledge probing tasks, and language understanding tasks. Experimental results show that CoLAKE outperforms previous counterparts on most of the tasks. Besides, CoLAKE achieves surprisingly high performance on our synthetic task called word-knowledge graph completion, which shows the superiority of simultaneously contextualizing language and knowledge representation.
Although Transformer has achieved great successes on many NLP tasks, its heavy structure with fully-connected attention connections leads to dependencies on large training data. In this paper, we present Star-Transformer, a lightweight alternative by careful sparsification. To reduce model complexity, we replace the fully-connected structure with a star-shaped topology, in which every two non-adjacent nodes are connected through a shared relay node. Thus, complexity is reduced from quadratic to linear, while preserving the capacity to capture both local composition and long-range dependency. The experiments on four tasks (22 datasets) show that Star-Transformer achieved significant improvements against the standard Transformer for the modestly sized datasets.