Understanding in-context learning (ICL) capability that enables large language models (LLMs) to excel in proficiency through demonstration examples is of utmost importance. This importance stems not only from the better utilization of this capability across various tasks, but also from the proactive identification and mitigation of potential risks, including concerns regarding truthfulness, bias, and toxicity, that may arise alongside the capability. In this paper, we present a thorough survey on the interpretation and analysis of in-context learning. First, we provide a concise introduction to the background and definition of in-context learning. Then, we give an overview of advancements from two perspectives: 1) a theoretical perspective, emphasizing studies on mechanistic interpretability and delving into the mathematical foundations behind ICL; and 2) an empirical perspective, concerning studies that empirically analyze factors associated with ICL. We conclude by discussing open questions and the challenges encountered, and suggesting potential avenues for future research. We believe that our work establishes the basis for further exploration into the interpretation of in-context learning. To aid this effort, we have created a repository containing resources that will be continually updated.
Existing datasets for narrative understanding often fail to represent the complexity and uncertainty of relationships in real-life social scenarios. To address this gap, we introduce a new benchmark, Conan, designed for extracting and analysing intricate character relation graphs from detective narratives. Specifically, we designed hierarchical relationship categories and manually extracted and annotated role-oriented relationships from the perspectives of various characters, incorporating both public relationships known to most characters and secret ones known to only a few. Our experiments with advanced Large Language Models (LLMs) like GPT-3.5, GPT-4, and Llama2 reveal their limitations in inferencing complex relationships and handling longer narratives. The combination of the Conan dataset and our pipeline strategy is geared towards understanding the ability of LLMs to comprehend nuanced relational dynamics in narrative contexts.
Generating rationales that justify scoring decisions has been a promising way to facilitate explainability in automated scoring systems. However, existing methods do not match the accuracy of classifier-based methods. Plus, the generated rationales often contain hallucinated information. To address these issues, we propose a novel framework capable of generating more faithful rationales and, more importantly, matching performance with classifier-based black-box scoring systems. We first mimic the human assessment process by querying Large Language Models (LLMs) to generate a thought tree. We then summarise intermediate assessment decisions from each thought tree path for creating synthetic rationale data and rationale preference data. Finally, we utilise the generated synthetic data to calibrate LLMs through a two-step training process: supervised fine-tuning and preference optimization. Extensive experimental results demonstrate that our framework achieves a 38% assessment performance improvement in the QWK score compared to prior work while producing higher-quality rationales, as recognised by human evaluators and LLMs. Our work sheds light on the effectiveness of performing preference optimization using synthetic preference data obtained from thought tree paths. Data and code are available at: https://github.com/lijiazheng99/thought_tree_assessment.
Event temporal graphs have been shown as convenient and effective representations of complex temporal relations between events in text. Recent studies, which employ pre-trained language models to auto-regressively generate linearised graphs for constructing event temporal graphs, have shown promising results. However, these methods have often led to suboptimal graph generation as the linearised graphs exhibit set characteristics which are instead treated sequentially by language models. This discrepancy stems from the conventional text generation objectives, leading to erroneous penalisation of correct predictions caused by the misalignment of elements in target sequences. To address these challenges, we reframe the task as a conditional set generation problem, proposing a Set-aligning Framework tailored for the effective utilisation of Large Language Models (LLMs). The framework incorporates data augmentations and set-property regularisations designed to alleviate text generation loss penalties associated with the linearised graph edge sequences, thus encouraging the generation of more relation edges. Experimental results show that our framework surpasses existing baselines for event temporal graph generation. Furthermore, under zero-shot settings, the structural knowledge introduced through our framework notably improves model generalisation, particularly when the training examples available are limited.
Providing explainable and faithful feedback is crucial for automated student answer assessment. In this paper, we introduce a novel framework that explores using ChatGPT, a cutting-edge large language model, for the concurrent tasks of student answer scoring and rationale generation. We identify the appropriate instructions by prompting ChatGPT with different templates to collect the rationales, where inconsistent rationales are refined to align with marking standards. The refined ChatGPT outputs enable us to fine-tune a smaller language model that simultaneously assesses student answers and provides rationales. Extensive experiments on the benchmark dataset show that the proposed method improves the overall QWK score by 11% compared to ChatGPT. Furthermore, our thorough analysis and human evaluation demonstrate that the rationales generated by our proposed method are comparable to those of ChatGPT. Our approach provides a viable solution to achieve explainable automated assessment in education
Adjusting for latent covariates is crucial for estimating causal effects from observational textual data. Most existing methods only account for confounding covariates that affect both treatment and outcome, potentially leading to biased causal effects. This bias arises from insufficient consideration of non-confounding covariates, which are relevant only to either the treatment or the outcome. In this work, we aim to mitigate the bias by unveiling interactions between different variables to disentangle the non-confounding covariates when estimating causal effects from text. The disentangling process ensures covariates only contribute to their respective objectives, enabling independence between variables. Additionally, we impose a constraint to balance representations from the treated group and control group to alleviate selection bias. We conduct experiments on two different treatment factors under various scenarios, and the proposed model significantly outperforms recent strong baselines. Furthermore, our thorough analysis on earnings call transcripts demonstrates that our model can effectively disentangle the variables, and further investigations into real-world scenarios provide guidance for investors to make informed decisions.
Dependency parse trees are helpful for discovering the opinion words in aspect-based sentiment analysis (ABSA) (CITATION). However, the trees obtained from off-the-shelf dependency parsers are static, and could be sub-optimal in ABSA. This is because the syntactic trees are not designed for capturing the interactions between opinion words and aspect words. In this work, we aim to shorten the distance between aspects and corresponding opinion words by learning an aspect-centric tree structure. The aspect and opinion words are expected to be closer along such tree structure compared to the standard dependency parse tree. The learning process allows the tree structure to adaptively correlate the aspect and opinion words, enabling us to better identify the polarity in the ABSA task. We conduct experiments on five aspect-based sentiment datasets, and the proposed model significantly outperforms recent strong baselines. Furthermore, our thorough analysis demonstrates the average distance between aspect and opinion words are shortened by at least 19% on the standard SemEval Restaurant14 (CITATION) dataset.
A quality abstractive summary should not only copy salient source texts as summaries but should also tend to generate new conceptual words to express concrete details. Inspired by the popular pointer generator sequence-to-sequence model, this paper presents a concept pointer network for improving these aspects of abstractive summarization. The network leverages knowledge-based, context-aware conceptualizations to derive an extended set of candidate concepts. The model then points to the most appropriate choice using both the concept set and original source text. This joint approach generates abstractive summaries with higher-level semantic concepts. The training model is also optimized in a way that adapts to different data, which is based on a novel method of distant-supervised learning guided by reference summaries and testing set. Overall, the proposed approach provides statistically significant improvements over several state-of-the-art models on both the DUC-2004 and Gigaword datasets. A human evaluation of the model’s abstractive abilities also supports the quality of the summaries produced within this framework.