Guangluan Xu


2024

pdf bib
Rethinking the Reversal Curse of LLMs: a Prescription from Human Knowledge Reversal
Zhicong Lu | Li Jin | Peiguang Li | Yu Tian | Linhao Zhang | Sirui Wang | Guangluan Xu | Changyuan Tian | Xunliang Cai
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have exhibited exceptional performance across diverse domains. However, recent studies reveal that LLMs are plagued by the “reversal curse”. Most existing methods rely on aggressive sample permutation and pay little attention to delving into the underlying reasons for this issue, resulting in only partial mitigation. In this paper, inspired by human knowledge reversal, we investigate and quantify the individual influence of three potential reasons on the reversal curse: 1) knowledge clarity, 2) entity correlation modeling, and 3) pairwise relationship reasoning capability. Motivated by the analysis of these reasons, we propose a novel **P**airwise entity **O**rder- and **R**elationship-**E**nhanced (**PORE**) data strategy, which facilitates bidirectional entity correlation modeling and pairwise relationship reasoning to overcome the reversal curse. Specifically, PORE augments the samples with entity order-reversal and semantically preserved question-answer pairs, enhancing the encoding of entity correlations in both directions. PORE also employs entity-interleaved pairwise relationship data, which elevates the model’s capability for relationship reasoning. Additionally, to improve the recall of reverse relationships, we leverage knowledge clarity to construct high-clarity data for PORE. Extensive experimental results on available and two newly assembled datasets demonstrate the effectiveness and generalization of our method in both data-sufficient and -constrained situations.

pdf bib
GOME: Grounding-based Metaphor Binding With Conceptual Elaboration For Figurative Language Illustration
Linhao Zhang | Jintao Liu | Li Jin | Hao Wang | Kaiwen Wei | Guangluan Xu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The illustration or visualization of figurative language, such as linguistic metaphors, is an emerging challenge for existing Large Language Models (LLMs) and multimodal models. Due to their comparison of seemingly unrelated concepts in metaphors, existing LLMs have a tendency of over-literalization, which illustrates figurative language solely based on literal objects, ignoring the underlying groundings and associations across disparate metaphorical domains. Furthermore, prior approaches have ignored the binding process between visual objects and metaphorical attributes, which further intensifies the infidelity of visual metaphors. To address the issues above, we propose GOME (Grounding-based Metaphor Binding), which illustrates linguistic metaphors from the grounding perspective elaborated through LLMs. GOME consists of two steps for metaphor illustration, including grounding-based elaboration and scenario visualization. In the elaboration step, metaphorical knowledge is integrated into systematic instructions for LLMs, which employs a CoT prompting method rooted in rhetoric. This approach specifies metaphorical devices such as vehicles and groundings, to ensure accurate and faithful descriptions consumed by text-to-image models. In the visualization step, an inference-time metaphor binding method is realized based on elaboration outputs, which register attentional control during the diffusion process, and captures the underlying attributes from the abstract metaphorical domain. Comprehensive evaluations using multiple downstream tasks confirm that, GOME is superior to isolated LLMs, diffusion models, or their direct collaboration.

2023

pdf bib
Narrative Order Aware Story Generation via Bidirectional Pretraining Model with Optimal Transport Reward
Zhicong Lu | Li Jin | Guangluan Xu | Linmei Hu | Nayu Liu | Xiaoyu Li | Xian Sun | Zequn Zhang | Kaiwen Wei
Findings of the Association for Computational Linguistics: EMNLP 2023

To create a captivating story, a writer often plans a sequence of logically coherent events and ingeniously manipulates the narrative order to generate flashback in place. However, existing storytelling systems suffer from both insufficient understanding of event correlations and inadequate awareness of event temporal order (e.g., go to hospital <after> get ill), making it challenging to generate high-quality events that balance the logic and narrative order of story. In this paper, we propose a narrative order aware framework BPOT (Bidirectional Pretraining Model with Optimal Transport Reward) for story generation, which presents a bidirectional pretrained model to encode event correlations and pairwise event order. We also design a reinforcement learning algorithm with novel optimal transport reward to further improve the quality of generated events in the fine-tuning stage. Specifically, a narrative order aware event sequence model is pretrained with the joint learning objectives of event blank infilling and pairwise order prediction. Then, reinforcement learning with novel optimal transport reward is designed to further improve the generated event quality in the fine-tuning stage. The novel optimal transport reward captures the mappings between the generated events and the sentences in the story, effectively measuring the quality of generated events. Both automatic and manual evaluation results demonstrate the superiority of our framework in generating logically coherent stories with flashbacks.

2022

pdf bib
Assist Non-native Viewers: Multimodal Cross-Lingual Summarization for How2 Videos
Nayu Liu | Kaiwen Wei | Xian Sun | Hongfeng Yu | Fanglong Yao | Li Jin | Guo Zhi | Guangluan Xu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multimodal summarization for videos aims to generate summaries from multi-source information (videos, audio transcripts), which has achieved promising progress. However, existing works are restricted to monolingual video scenarios, ignoring the demands of non-native video viewers to understand the cross-language videos in practical applications. It stimulates us to propose a new task, named Multimodal Cross-Lingual Summarization for videos (MCLS), which aims to generate cross-lingual summaries from multimodal inputs of videos. First, to make it applicable to MCLS scenarios, we conduct a Video-guided Dual Fusion network (VDF) that integrates multimodal and cross-lingual information via diverse fusion strategies at both encoder and decoder. Moreover, to alleviate the problem of high annotation costs and limited resources in MCLS, we propose a triple-stage training framework to assist MCLS by transferring the knowledge from monolingual multimodal summarization data, which includes: 1) multimodal summarization on sufficient prevalent language videos with a VDF model; 2) knowledge distillation (KD) guided adjustment on bilingual transcripts; 3) multimodal summarization for cross-lingual videos with a KD induced VDF model. Experiment results on the reorganized How2 dataset show that the VDF model alone outperforms previous methods for multimodal summarization, and the performance further improves by a large margin via the proposed triple-stage training framework.

2020

pdf bib
Multistage Fusion with Forget Gate for Multimodal Summarization in Open-Domain Videos
Nayu Liu | Xian Sun | Hongfeng Yu | Wenkai Zhang | Guangluan Xu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Multimodal summarization for open-domain videos is an emerging task, aiming to generate a summary from multisource information (video, audio, transcript). Despite the success of recent multiencoder-decoder frameworks on this task, existing methods lack fine-grained multimodality interactions of multisource inputs. Besides, unlike other multimodal tasks, this task has longer multimodal sequences with more redundancy and noise. To address these two issues, we propose a multistage fusion network with the fusion forget gate module, which builds upon this approach by modeling fine-grained interactions between the modalities through a multistep fusion schema and controlling the flow of redundant information between multimodal long sequences via a forgetting module. Experimental results on the How2 dataset show that our proposed model achieves a new state-of-the-art performance. Comprehensive analysis empirically verifies the effectiveness of our fusion schema and forgetting module on multiple encoder-decoder architectures. Specially, when using high noise ASR transcripts (WER>30%), our model still achieves performance close to the ground-truth transcript model, which reduces manual annotation cost.