Parameter-efficient fine-tuning (PEFT) has enabled the efficient optimization of cumbersome language models in real-world settings. However, as datasets in such environments often contain noisy labels that adversely affect performance, PEFT methods are inevitably exposed to noisy labels. Despite this challenge, the adaptability of PEFT to noisy environments remains underexplored. To bridge this gap, we investigate various PEFT methods under noisy labels. Interestingly, our findings reveal that PEFT has difficulty in memorizing noisy labels due to its inherently limited capacity, resulting in robustness. However, we also find that such limited capacity simultaneously makes PEFT more vulnerable to interference of noisy labels, impeding the learning of clean samples. To address this issue, we propose Clean Routing (CleaR), a novel routing-based PEFT approach that adaptively activates PEFT modules. In CleaR, PEFT modules are preferentially exposed to clean data while bypassing the noisy ones, thereby minimizing the noisy influence. To verify the efficacy of CleaR, we perform extensive experiments on diverse configurations of noisy labels. The results convincingly demonstrate that CleaR leads to substantially improved performance in noisy environments
Large Language Models (LLMs) have displayed remarkable performances across various complex tasks by leveraging Chain-of-Thought (CoT) prompting. Recently, studies have proposed a Knowledge Distillation (KD) approach, reasoning distillation, which transfers such reasoning ability of LLMs through fine-tuning language models of multi-step rationales generated by LLM teachers. However, they have inadequately considered two challenges regarding insufficient distillation sets from the LLM teacher model, in terms of 1) data quality and 2) soft label provision. In this paper, we propose Mentor-KD, which effectively distills the multi-step reasoning capability of LLMs to smaller LMs while addressing the aforementioned challenges. Specifically, we exploit a mentor, intermediate-sized task-specific fine-tuned model, to augment additional CoT annotations and provide soft labels for the student model during reasoning distillation. We conduct extensive experiments and confirm Mentor-KD’s effectiveness across various models and complex reasoning tasks.
In this paper, we introduce COCONUT to effectively guide the contextualization of structured commonsense knowledge based on largelanguage models. COCONUT employs a contextualized knowledge prompting scheme to gather high-quality contextualization examplesfrom a large language model. These examples are subsequently distilled into small language models to enhance their contextualization capability. Extensive evaluations show that COCONUT considerably improves commonsense reasoning performance across diverse benchmarks, models, and settings, exhibiting its flexibility and universality in generating contextualized commonsense knowledge. Notably,COCONUT consistently outperforms the state-of-the-art technique by an average of 5.8%.
This paper presents a way of enhancing the reliability of Large Multi-modal Models (LMMs) in addressing hallucination, where the models generate cross-modal inconsistent responses. Without additional training, we propose Counterfactual Inception, a novel method that implants counterfactual thinking into LMMs using self-generated counterfactual keywords. Our method is grounded in the concept of counterfactual thinking, a cognitive process where human considers alternative realities, enabling more extensive context exploration. Bridging the human cognition mechanism into LMMs, we aim for the models to engage with and generate responses that span a wider contextual scene understanding, mitigating hallucinatory outputs. We further introduce Plausibility Verification Process (PVP), a simple yet robust keyword constraint that effectively filters out sub-optimal keywords to enable the consistent triggering of counterfactual thinking in the model responses. Comprehensive analyses across various LMMs, including both open-source and proprietary models, corroborate that counterfactual thinking significantly reduces hallucination and helps to broaden contextual understanding based on true visual clues.
We introduce a novel continued pre-training method, MELT (MatEriaLs-aware continued pre-Training), specifically designed to efficiently adapt the pre-trained language models (PLMs) for materials science. Unlike previous adaptation strategies that solely focus on constructing domain-specific corpus, MELT comprehensively considers both the corpus and the training strategy, given that materials science corpus has distinct characteristics from other domains. To this end, we first construct a comprehensive materials knowledge base from the scientific corpus by building semantic graphs. Leveraging this extracted knowledge, we integrate a curriculum into the adaptation process that begins with familiar and generalized concepts and progressively moves toward more specialized terms. We conduct extensive experiments across diverse benchmarks to verify the effectiveness and generality of MELT. A comprehensive evaluation convincingly supports the strength of MELT, demonstrating superior performance compared to existing continued pre-training methods. In-depth analysis also shows that MELT enables PLMs to effectively represent materials entities compared to the existing adaptation methods, thereby highlighting its broad applicability across a wide spectrum of materials science.
Prompt tuning has emerged as a successful parameter-efficient alternative to the full fine-tuning of language models. However, prior works on prompt tuning often utilize long soft prompts of up to 100 tokens to improve performance, overlooking the inefficiency associated with extended inputs. In this paper, we propose a novel prompt tuning method SMoP (Sparse Mixture-of-Prompts) that utilizes short soft prompts for efficient training and inference while maintaining performance gains typically induced from longer soft prompts. To achieve this, SMoP employs a gating mechanism to train multiple short soft prompts specialized in handling different subsets of the data, providing an alternative to relying on a single long soft prompt to cover the entire data. Experimental results demonstrate that SMoP outperforms baseline methods while reducing training and inference costs. We release our code at https://github.com/jyjohnchoi/SMoP.
Computational inefficiency in transformers has been a long-standing challenge, hindering the deployment in resource-constrained or real-time applications. One promising approach to mitigate this limitation is to progressively remove less significant tokens, given that the sequence length strongly contributes to the inefficiency. However, this approach entails a potential risk of losing crucial information due to the irrevocable nature of token removal. In this paper, we introduce Leap-of-Thought (LoT), a novel token reduction approach that dynamically routes tokens within layers. Unlike previous work that irrevocably discards tokens, LoT enables tokens to ‘leap’ across layers. This ensures that all tokens remain accessible in subsequent layers while reducing the number of tokens processed within layers. We achieve this by pairing the transformer with dynamic token routers, which learn to selectively process tokens essential for the task. Evaluation results clearly show that LoT achieves a substantial improvement in computational efficiency. Specifically, LoT attains up to 25x faster inference time without a significant loss in accuracy
Despite the versatility of pre-trained language models (PLMs) across domains, their large memory footprints pose significant challenges in federated learning (FL), where the training model has to be distributed between a server and clients. One potential solution to bypass such constraints might be the use of parameter-efficient fine-tuning (PEFT) in the context of FL. However, we have observed that typical PEFT tends to severely suffer from heterogeneity among clients in FL scenarios, resulting in unstable and slow convergence. In this paper, we propose Client-Customized Adaptation (C2A), a novel hypernetwork-based FL framework that generates client-specific adapters by conditioning the client information. With the effectiveness of the hypernetworks in generating customized weights through learning to adopt the different characteristics of inputs, C2A can maximize the utility of shared model parameters while minimizing the divergence caused by client heterogeneity. To verify the efficacy of C2A, we perform extensive evaluations on FL scenarios involving heterogeneity in label and language distributions. Comprehensive evaluation results clearly support the superiority of C2A in terms of both efficiency and effectiveness in FL scenarios.
Pre-trained language models have achieved remarkable successes in natural language processing tasks, coming at the cost of increasing model size. To address this issue, knowledge distillation (KD) has been widely applied to compress language models. However, typical KD approaches for language models have overlooked the difficulty of training examples, suffering from incorrect teacher prediction transfer and sub-efficient training. In this paper, we propose a novel KD framework, Tutor-KD, which improves the distillation effectiveness by controlling the difficulty of training examples during pre-training. We introduce a tutor network that generates samples that are easy for the teacher but difficult for the student, with training on a carefully designed policy gradient method. Experimental results show that Tutor-KD significantly and consistently outperforms the state-of-the-art KD methods with variously sized student models on the GLUE benchmark, demonstrating that the tutor can effectively generate training examples for the student.
Self-supervised pre-training has achieved remarkable success in extensive natural language processing tasks. Masked language modeling (MLM) has been widely used for pre-training effective bidirectional representations but comes at a substantial training cost. In this paper, we propose a novel concept-based curriculum masking (CCM) method to efficiently pre-train a language model. CCM has two key differences from existing curriculum learning approaches to effectively reflect the nature of MLM. First, we introduce a novel curriculum that evaluates the MLM difficulty of each token based on a carefully-designed linguistic difficulty criterion. Second, we construct a curriculum that masks easy words and phrases first and gradually masks related ones to the previously masked ones based on a knowledge graph. Experimental results show that CCM significantly improves pre-training efficiency. Specifically, the model trained with CCM shows comparative performance with the original BERT on the General Language Understanding Evaluation benchmark at half of the training cost.
Commonsense inference poses a unique challenge to reason and generate the physical, social, and causal conditions of a given event. Existing approaches to commonsense inference utilize commonsense transformers, which are large-scale language models that learn commonsense knowledge graphs. However, they suffer from a lack of coverage and expressive diversity of the graphs, resulting in a degradation of the representation quality. In this paper, we focus on addressing missing relations in commonsense knowledge graphs, and propose a novel contrastive learning framework called SOLAR. Our framework contrasts sets of semantically similar and dissimilar events, learning richer inferential knowledge compared to existing approaches. Empirical results demonstrate the efficacy of SOLAR in commonsense inference of diverse commonsense knowledge graphs. Specifically, SOLAR outperforms the state-of-the-art commonsense transformer on commonsense inference with ConceptNet by 1.84% on average among 8 automatic evaluation metrics. In-depth analysis of SOLAR sheds light on the effects of the missing relations utilized in learning commonsense knowledge graphs.