Koustava Goswami


2024

pdf bib
An Audit on the Perspectives and Challenges of Hallucinations in NLP
Pranav Narayanan Venkit | Tatiana Chakravorti | Vipul Gupta | Heidi Biggs | Mukund Srinath | Koustava Goswami | Sarah Rajtmajer | Shomir Wilson
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

We audit how hallucination in large language models (LLMs) is characterized in peer-reviewed literature, using a critical examination of 103 publications across NLP research. Through the examination of the literature, we identify a lack of agreement with the term ‘hallucination’ in the field of NLP. Additionally, to compliment our audit, we conduct a survey with 171 practitioners from the field of NLP and AI to capture varying perspectives on hallucination. Our analysis calls for the necessity of explicit definitions and frameworks outlining hallucination within NLP, highlighting potential challenges, and our survey inputs provide a thematic understanding of the influence and ramifications of hallucination in society.

pdf bib
Enhancing Post-Hoc Attributions in Long Document Comprehension via Coarse Grained Answer Decomposition
Pritika Ramu | Koustava Goswami | Apoorv Saxena | Balaji Vasan Srinivasan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Accurately attributing answer text to its source document is crucial for developing a reliable question-answering system. However, attribution for long documents remains largely unexplored. Post-hoc attribution systems are designed to map answer text back to the source document, yet the granularity of this mapping has not been addressed. Furthermore, a critical question arises: What exactly should be attributed? This involves identifying the specific information units within an answer that require grounding. In this paper, we propose and investigate a novel approach to the factual decomposition of generated answers for attribution, employing template-based in-context learning. To accomplish this, we utilize the question and integrate negative sampling during few-shot in-context learning for decomposition. This approach enhances the semantic understanding of both abstractive and extractive answers. We examine the impact of answer decomposition by providing a thorough examination of various attribution approaches, ranging from retrieval-based techniques to LLM-based attributors.

pdf bib
Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering
Anirudh Phukan | Shwetha Somasundaram | Apoorv Saxena | Koustava Goswami | Balaji Vasan Srinivasan
Findings of the Association for Computational Linguistics: ACL 2024

With the enhancement in the field of generative artificial intelligence (AI), contextual question answering has become extremely relevant. Attributing model generations to the input source document is essential to ensure trustworthiness and reliability. We observe that when large language models (LLMs) are used for contextual question answering, the output answer often consists of text copied verbatim from the input prompt which is linked together with “glue text” generated by the LLM. Motivated by this, we propose that LLMs have an inherent awareness from where the text was copied, likely captured in the hidden states of the LLM. We introduce a novel method for attribution in contextual question answering, leveraging the hidden state representations of LLMs. Our approach bypasses the need for extensive model retraining and retrieval model overhead, offering granular attributions and preserving the quality of generated answers. Our experimental results demonstrate that our method performs on par or better than GPT-4 at identifying verbatim copied segments in LLM generations and in attributing these segments to their source. Importantly, our method shows robust performance across various LLM architectures, highlighting its broad applicability. Additionally, we present Verifiability-granular, an attribution dataset which has token level annotations for LLM generations in the contextual question answering setup.

pdf bib
Post-Hoc Answer Attribution for Grounded and Trustworthy Long Document Comprehension: Task, Insights, and Challenges
Abhilasha Sancheti | Koustava Goswami | Balaji Srinivasan
Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024)

Attributing answer text to its source document for information-seeking questions is crucial for building trustworthy, reliable, and accountable systems. We formulate a new task of post-hoc answer attribution for long document comprehension (LDC). Owing to the lack of long-form abstractive and information-seeking LDC datasets, we refactor existing datasets to assess the strengths and weaknesses of existing retrieval-based and proposed answer decomposition and textual entailment-based optimal selection attribution systems for this task. We throw light on the limitations of existing datasets and the need for datasets to assess the actual performance of systems on this task.

2023

pdf bib
SwitchPrompt: Learning Domain-Specific Gated Soft Prompts for Classification in Low-Resource Domains
Koustava Goswami | Lukas Lange | Jun Araki | Heike Adel
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Prompting pre-trained language models leads to promising results across natural language processing tasks but is less effective when applied in low-resource domains, due to the domain gap between the pre-training data and the downstream task. In this work, we bridge this gap with a novel and lightweight prompting methodology called SwitchPrompt for the adaptation of language models trained on datasets from the general domain to diverse low-resource domains. Using domain-specific keywords with a trainable gated prompt, SwitchPrompt offers domain-oriented prompting, that is, effective guidance on the target domains for general-domain language models. Our few-shot experiments on three text classification benchmarks demonstrate the efficacy of the general-domain pre-trained language models when used with SwitchPrompt. They often even outperform their domain-specific counterparts trained with baseline state-of-the-art prompting methods by up to 10.7% performance increase in accuracy. This result indicates that SwitchPrompt effectively reduces the need for domain-specific language model pre-training.

pdf bib
Weakly-supervised Deep Cognate Detection Framework for Low-Resourced Languages Using Morphological Knowledge of Closely-Related Languages
Koustava Goswami | Priya Rani | Theodorus Fransen | John McCrae
Findings of the Association for Computational Linguistics: EMNLP 2023

Exploiting cognates for transfer learning in under-resourced languages is an exciting opportunity for language understanding tasks, including unsupervised machine translation, named entity recognition and information retrieval. Previous approaches mainly focused on supervised cognate detection tasks based on orthographic, phonetic or state-of-the-art contextual language models, which under-perform for most under-resourced languages. This paper proposes a novel language-agnostic weakly-supervised deep cognate detection framework for under-resourced languages using morphological knowledge from closely related languages. We train an encoder to gain morphological knowledge of a language and transfer the knowledge to perform unsupervised and weakly-supervised cognate detection tasks with and without the pivot language for the closely-related languages. While unsupervised, it overcomes the need for hand-crafted annotation of cognates. We performed experiments on different published cognate detection datasets across language families and observed not only significant improvement over the state-of-the-art but also our method outperformed the state-of-the-art supervised and unsupervised methods. Our model can be extended to a wide range of languages from any language family as it overcomes the requirement of the annotation of the cognate pairs for training.

pdf bib
Drilling Down into the Discourse Structure with LLMs for Long Document Question Answering
Inderjeet Nair | Shwetha Somasundaram | Apoorv Saxena | Koustava Goswami
Findings of the Association for Computational Linguistics: EMNLP 2023

We address the task of evidence retrieval for long document question answering, which involves locating relevant paragraphs within a document to answer a question. We aim to assess the applicability of large language models (LLMs) in the task of zero-shot long document evidence retrieval, owing to their unprecedented performance across various NLP tasks. However, currently the LLMs can consume limited context lengths as input, thus providing document chunks as inputs might overlook the global context while missing out on capturing the inter-segment dependencies. Moreover, directly feeding the large input sets can incur significant computational costs, particularly when processing the entire document (and potentially incurring monetary expenses with enterprise APIs like OpenAI’s GPT variants). To address these challenges, we propose a suite of techniques that exploit the discourse structure commonly found in documents. By utilizing this structure, we create a condensed representation of the document, enabling a more comprehensive understanding and analysis of relationships between different parts. We retain 99.6% of the best zero-shot approach’s performance, while processing only 26% of the total tokens used by the best approach in the information seeking evidence retrieval setup. We also show how our approach can be combined with *self-ask* reasoning agent to achieve best zero-shot performance in complex multi-hop question answering, just ≈ 4% short of zero-shot performance using gold evidence.

pdf bib
Proceedings of the 5th Workshop on Research in Computational Linguistic Typology and Multilingual NLP
Lisa Beinborn | Koustava Goswami | Saliha Muradoğlu | Alexey Sorokin | Ritesh Kumar | Andreas Shcherbakov | Edoardo M. Ponti | Ryan Cotterell | Ekaterina Vylomova
Proceedings of the 5th Workshop on Research in Computational Linguistic Typology and Multilingual NLP

pdf bib
Findings of the SIGTYP 2023 Shared task on Cognate and Derivative Detection For Low-Resourced Languages
Priya Rani | Koustava Goswami | Adrian Doyle | Theodorus Fransen | Bernardo Stearns | John P. McCrae
Proceedings of the 5th Workshop on Research in Computational Linguistic Typology and Multilingual NLP

This paper describes the structure and findings of the SIGTYP 2023 shared task on cognate and derivative detection for low-resourced languages, broken down into a supervised and unsupervised sub-task. The participants were asked to submit the test data’s final prediction. A total of nine teams registered for the shared task where seven teams registered for both sub-tasks. Only two participants ended up submitting system descriptions, with only one submitting systems for both sub-tasks. While all systems show a rather promising performance, all could be within the baseline score for the supervised sub-task. However, the system submitted for the unsupervised sub-task outperforms the baseline score.

2021

pdf bib
Cross-lingual Sentence Embedding using Multi-Task Learning
Koustava Goswami | Sourav Dutta | Haytham Assem | Theodorus Fransen | John P. McCrae
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Multilingual sentence embeddings capture rich semantic information not only for measuring similarity between texts but also for catering to a broad range of downstream cross-lingual NLP tasks. State-of-the-art multilingual sentence embedding models require large parallel corpora to learn efficiently, which confines the scope of these models. In this paper, we propose a novel sentence embedding framework based on an unsupervised loss function for generating effective multilingual sentence embeddings, eliminating the need for parallel corpora. We capture semantic similarity and relatedness between sentences using a multi-task loss function for training a dual encoder model mapping different languages onto the same vector space. We demonstrate the efficacy of an unsupervised as well as a weakly supervised variant of our framework on STS, BUCC and Tatoeba benchmark tasks. The proposed unsupervised sentence embedding framework outperforms even supervised state-of-the-art methods for certain under-resourced languages on the Tatoeba dataset and on a monolingual benchmark. Further, we show enhanced zero-shot learning capabilities for more than 30 languages, with the model being trained on only 13 languages. Our model can be extended to a wide range of languages from any language family, as it overcomes the requirement of parallel corpora for training.

pdf bib
ULD-NUIG at Social Media Mining for Health Applications (#SMM4H) Shared Task 2021
Atul Kr. Ojha | Priya Rani | Koustava Goswami | Bharathi Raja Chakravarthi | John P. McCrae
Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task

Social media platforms such as Twitter and Facebook have been utilised for various research studies, from the cohort-level discussion to community-driven approaches to address the challenges in utilizing social media data for health, clinical and biomedical information. Detection of medical jargon’s, named entity recognition, multi-word expression becomes the primary, fundamental steps in solving those challenges. In this paper, we enumerate the ULD-NUIG team’s system, designed as part of Social Media Mining for Health Applications (#SMM4H) Shared Task 2021. The team conducted a series of experiments to explore the challenges of task 6 and task 5. The submitted systems achieve F-1 0.84 and 0.53 score for task 6 and 5 respectively.

2020

pdf bib
Unsupervised Deep Language and Dialect Identification for Short Texts
Koustava Goswami | Rajdeep Sarkar | Bharathi Raja Chakravarthi | Theodorus Fransen | John P. McCrae
Proceedings of the 28th International Conference on Computational Linguistics

Automatic Language Identification (LI) or Dialect Identification (DI) of short texts of closely related languages or dialects, is one of the primary steps in many natural language processing pipelines. Language identification is considered a solved task in many cases; however, in the case of very closely related languages, or in an unsupervised scenario (where the languages are not known in advance), performance is still poor. In this paper, we propose the Unsupervised Deep Language and Dialect Identification (UDLDI) method, which can simultaneously learn sentence embeddings and cluster assignments from short texts. The UDLDI model understands the sentence constructions of languages by applying attention to character relations which helps to optimize the clustering of languages. We have performed our experiments on three short-text datasets for different language families, each consisting of closely related languages or dialects, with very minimal training sets. Our experimental evaluations on these datasets have shown significant improvement over state-of-the-art unsupervised methods and our model has outperformed state-of-the-art LI and DI systems in supervised settings.

pdf bib
Suggest me a movie for tonight: Leveraging Knowledge Graphs for Conversational Recommendation
Rajdeep Sarkar | Koustava Goswami | Mihael Arcan | John P. McCrae
Proceedings of the 28th International Conference on Computational Linguistics

Conversational recommender systems focus on the task of suggesting products to users based on the conversation flow. Recently, the use of external knowledge in the form of knowledge graphs has shown to improve the performance in recommendation and dialogue systems. Information from knowledge graphs aids in enriching those systems by providing additional information such as closely related products and textual descriptions of the items. However, knowledge graphs are incomplete since they do not contain all factual information present on the web. Furthermore, when working on a specific domain, knowledge graphs in its entirety contribute towards extraneous information and noise. In this work, we study several subgraph construction methods and compare their performance across the recommendation task. We incorporate pre-trained embeddings from the subgraphs along with positional embeddings in our models. Extensive experiments show that our method has a relative improvement of at least 5.62% compared to the state-of-the-art on multiple metrics on the recommendation task.

pdf bib
ULD@NUIG at SemEval-2020 Task 9: Generative Morphemes with an Attention Model for Sentiment Analysis in Code-Mixed Text
Koustava Goswami | Priya Rani | Bharathi Raja Chakravarthi | Theodorus Fransen | John P. McCrae
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Code mixing is a common phenomena in multilingual societies where people switch from one language to another for various reasons. Recent advances in public communication over different social media sites have led to an increase in the frequency of code-mixed usage in written language. In this paper, we present the Generative Morphemes with Attention (GenMA) Model sentiment analysis system contributed to SemEval 2020 Task 9 SentiMix. The system aims to predict the sentiments of the given English-Hindi code-mixed tweets without using word-level language tags instead inferring this automatically using a morphological model. The system is based on a novel deep neural network (DNN) architecture, which has outperformed the baseline F1-score on the test data-set as well as the validation data-set. Our results can be found under the user name “koustava” on the “Sentimix Hindi English” page.

pdf bib
A Comparative Study of Different State-of-the-Art Hate Speech Detection Methods in Hindi-English Code-Mixed Data
Priya Rani | Shardul Suryawanshi | Koustava Goswami | Bharathi Raja Chakravarthi | Theodorus Fransen | John Philip McCrae
Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying

Hate speech detection in social media communication has become one of the primary concerns to avoid conflicts and curb undesired activities. In an environment where multilingual speakers switch among multiple languages, hate speech detection becomes a challenging task using methods that are designed for monolingual corpora. In our work, we attempt to analyze, detect and provide a comparative study of hate speech in a code-mixed social media text. We also provide a Hindi-English code-mixed data set consisting of Facebook and Twitter posts and comments. Our experiments show that deep learning models trained on this code-mixed corpus perform better.