As large vision-language models (LVLMs) evolve rapidly, the demand for high-quality and diverse data to align these models becomes increasingly crucial. However, the creation of such data with human supervision proves costly and time-intensive. In this paper, we investigate the efficacy of AI feedback to scale supervision for aligning LVLMs. We introduce VLFeedback, the first large-scale vision-language feedback dataset, comprising over 82K multi-modal instructions and comprehensive rationales generated by off-the-shelf models without human annotations. To evaluate the effectiveness of AI feedback for vision-language alignment, we train Silkie, an LVLM fine-tuned via direct preference optimization on VLFeedback. Silkie showcases exceptional performance regarding helpfulness, visual faithfulness, and safety metrics. It outperforms its base model by 6.9% and 9.5% in perception and cognition tasks, reduces hallucination issues on MMHal-Bench, and exhibits enhanced resilience against red-teaming attacks. Furthermore, our analysis underscores the advantage of AI feedback, particularly in fostering preference diversity to deliver more comprehensive improvements. Our dataset, training code and models are available at https://vlf-silkie.github.io.
VLMs (Vision-Language Models) extend the capabilities of LLMs (Large Language Models) to accept multimodal inputs. Since it has been verified that LLMs can be induced to generate harmful or inaccurate content through specific test cases (termed as Red Teaming), how VLMs perform in similar scenarios, especially with their combination of textual and visual inputs, remains a question. To explore this problem, we present a novel red teaming dataset RTVLM, which encompasses 12 subtasks (e.g., image misleading, multi-modal jailbreaking, face fairness, etc) under 4 primary aspects (faithfulness, privacy, safety, fairness). Our RTVLM is the first red teaming dataset to benchmark current VLMs in terms of these 4 different aspects. Detailed analysis shows that 10 prominent open-sourced VLMs struggle with the red teaming in different degrees and have up to 31% performance gap with GPT-4V. Additionally, we simply apply red teaming alignment to LLaVA-v1.5 with Supervised Fine-tuning (SFT) using RTVLM, and this bolsters the models’ performance with 10% in RTVLM test set, 13% in MM-hallu, and without noticeable decline in MM-Bench, overpassing other LLaVA-based models in similar size with regular alignment data. This reveals that current open-sourced VLMs still lack red teaming alignment. Our code and datasets will be open-sourced.
Recently, there has been growing interest in long-context scaling of large language models (LLMs). To facilitate research in this field, we propose L-Eval to institute a more standardized evaluation for Long-Context Language Models (LCLMs) addressing two key aspects: dataset construction and evaluation metrics. On the one hand, we build a new evaluation suite containing 20 sub-tasks, 508 long documents, and more than 2,000 human-labeled query-response pairs including diverse task types, domains, and input length (3k~200k tokens). On the other hand, we investigate the effectiveness of evaluation metrics for LCLMs and we show that Length-instruction-enhanced (LIE) evaluation and LLM judges can better correlate with human judgments. We conducted a comprehensive study of 4 popular commercial LLMs and 12 open-source counterparts using the L-Eval benchmark. Our empirical findings offer useful insights into the study of LCLMs and lay the groundwork for the development of a more principled evaluation of these models.
Diffusion models have gained prominence in generating high-quality sequences of text. Nevertheless, current approaches predominantly represent discrete text within a continuous diffusion space, which incurs substantial computational overhead during training and results in slower sampling speeds. In this paper, we introduce a soft absorbing state that facilitates the diffusion model in learning to reconstruct discrete mutations based on the underlying Gaussian space, thereby enhancing its capacity to recover conditional signals. During the sampling phase, we employ state-of-the-art ODE solvers within the continuous space to expedite the sampling process. Comprehensive experimental evaluations reveal that our proposed method effectively accelerates the training convergence by 4x and generates samples of similar quality 800x faster, rendering it significantly closer to practical application.
In this paper, we propose an effective yet efficient model PAIE for both sentence-level and document-level Event Argument Extraction (EAE), which also generalizes well when there is a lack of training data. On the one hand, PAIE utilizes prompt tuning for extractive objectives to take the best advantages of Pre-trained Language Models (PLMs). It introduces two span selectors based on the prompt to select start/end tokens among input texts for each role. On the other hand, it captures argument interactions via multi-role prompts and conducts joint optimization with optimal span assignments via a bipartite matching loss. Also, with a flexible prompt design, PAIE can extract multiple arguments with the same role instead of conventional heuristic threshold tuning. We have conducted extensive experiments on three benchmarks, including both sentence- and document-level EAE. The results present promising improvements from PAIE (3.5% and 2.3% F1 gains in average on three benchmarks, for PAIE-base and PAIE-large respectively). Further analysis demonstrates the efficiency, generalization to few-shot settings, and effectiveness of different extractive prompt tuning strategies. Our code is available at https://github.com/mayubo2333/PAIE.
Events are fundamental building blocks of real-world happenings. In this paper, we present a large-scale, multi-modal event knowledge graph named MMEKG. MMEKG unifies different modalities of knowledge via events, which complement and disambiguate each other. Specifically, MMEKG incorporates (i) over 990 thousand concept events with 644 relation types to cover most types of happenings, and (ii) over 863 million instance events connected through 934 million relations, which provide rich contextual information in texts and/or images. To collect billion-scale instance events and relations among them, we additionally develop an efficient yet effective pipeline for textual/visual knowledge extraction system. We also develop an induction strategy to create million-scale concept events and a schema organizing all events and relations in MMEKG. To this end, we also provide a pipeline enabling our system to seamlessly parse texts/images to event graphs and to retrieve multi-modal knowledge at both concept- and instance-levels.
Document-level Event Causality Identification (DECI) aims to identify event-event causal relations in a document. Existing works usually build an event graph for global reasoning across multiple sentences. However, the edges between events have to be carefully designed through heuristic rules or external tools. In this paper, we propose a novel Event Relational Graph TransfOrmer (ERGO) framework for DECI, to ease the graph construction and improve it over the noisy edge issue. Different from conventional event graphs, we define a pair of events as a node and build a complete event relational graph without any prior knowledge or tools. This naturally formulates DECI as a node classification problem, and thus we capture the causation transitivity among event pairs via a graph transformer. Furthermore, we design a criss-cross constraint and an adaptive focal loss for the imbalanced classification, to alleviate the issues of false positives and false negatives. Extensive experiments on two benchmark datasets show that ERGO greatly outperforms previous state-of-the-art (SOTA) methods (12.8% F1 gains on average).
Backdoor attacks are a kind of insidious security threat against machine learning models. After being injected with a backdoor in training, the victim model will produce adversary-specified outputs on the inputs embedded with predesigned triggers but behave properly on normal inputs during inference. As a sort of emergent attack, backdoor attacks in natural language processing (NLP) are investigated insufficiently. As far as we know, almost all existing textual backdoor attack methods insert additional contents into normal samples as triggers, which causes the trigger-embedded samples to be detected and the backdoor attacks to be blocked without much effort. In this paper, we propose to use the syntactic structure as the trigger in textual backdoor attacks. We conduct extensive experiments to demonstrate that the syntactic trigger-based attack method can achieve comparable attack performance (almost 100% success rate) to the insertion-based methods but possesses much higher invisibility and stronger resistance to defenses. These results also reveal the significant insidiousness and harmfulness of textual backdoor attacks. All the code and data of this paper can be obtained at https://github.com/thunlp/HiddenKiller.
Adversarial attacks and backdoor attacks are two common security threats that hang over deep learning. Both of them harness task-irrelevant features of data in their implementation. Text style is a feature that is naturally irrelevant to most NLP tasks, and thus suitable for adversarial and backdoor attacks. In this paper, we make the first attempt to conduct adversarial and backdoor attacks based on text style transfer, which is aimed at altering the style of a sentence while preserving its meaning. We design an adversarial attack method and a backdoor attack method, and conduct extensive experiments to evaluate them. Experimental results show that popular NLP models are vulnerable to both adversarial and backdoor attacks based on text style transfer—the attack success rates can exceed 90% without much effort. It reflects the limited ability of NLP models to handle the feature of text style that has not been widely realized. In addition, the style transfer-based adversarial and backdoor attack methods show superiority to baselines in many aspects. All the code and data of this paper can be obtained at https://github.com/thunlp/StyleAttack.
Backdoor attacks are a kind of emergent training-time threat to deep neural networks (DNNs). They can manipulate the output of DNNs and possess high insidiousness. In the field of natural language processing, some attack methods have been proposed and achieve very high attack success rates on multiple popular models. Nevertheless, there are few studies on defending against textual backdoor attacks. In this paper, we propose a simple and effective textual backdoor defense named ONION, which is based on outlier word detection and, to the best of our knowledge, is the first method that can handle all the textual backdoor attack situations. Experiments demonstrate the effectiveness of our model in defending BiLSTM and BERT against five different backdoor attacks. All the code and data of this paper can be obtained at https://github.com/thunlp/ONION.