Pengyu Wang


2024

pdf bib
NewsBench: A Systematic Evaluation Framework for Assessing Editorial Capabilities of Large Language Models in Chinese Journalism
Miao Li | Ming-Bin Chen | Bo Tang | ShengbinHou ShengbinHou | Pengyu Wang | Haiying Deng | Zhiyu Li | Feiyu Xiong | Keming Mao | Cheng Peng | Yi Luo
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present NewsBench, a novel evaluation framework to systematically assess the capabilities of Large Language Models (LLMs) for editorial capabilities in Chinese journalism. Our constructed benchmark dataset is focused on four facets of writing proficiency and six facets of safety adherence, and it comprises manually and carefully designed 1,267 test samples in the types of multiple choice questions and short answer questions for five editorial tasks in 24 news domains. To measure performances, we propose different GPT-4 based automatic evaluation protocols to assess LLM generations for short answer questions in terms of writing proficiency and safety adherence, and both are validated by the high correlations with human evaluations. Based on the systematic evaluation framework, we conduct a comprehensive analysis of eleven popular LLMs which can handle Chinese. The experimental results highlight GPT-4 and ERNIE Bot as top performers, yet reveal a relative deficiency in journalistic safety adherence in creative writing tasks. Our findings also underscore the need for enhanced ethical guidance in machine-generated journalistic content, marking a step forward in aligning LLMs with journalistic standards and safety considerations. The evaluation framework and experimental results are expected to provide an in-depth understanding of the editorial capabilities of LLMs and speed up the development of LLMs in journalism.

pdf bib
InferAligner: Inference-Time Alignment for Harmlessness through Cross-Model Guidance
Pengyu Wang | Dong Zhang | Linyang Li | Chenkun Tan | Xinghao Wang | Mozhi Zhang | Ke Ren | Botian Jiang | Xipeng Qiu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

As large language models (LLMs) rapidly evolve, they are increasingly being customized through fine-tuning to suit the specific needs of various applications. A critical aspect of this advancement is the alignment process, which ensures that these models perform tasks in ways that align with human values and expectations. Current alignment methods, such as direct preference optimization (DPO) and reinforcement learning from human feedback (RLHF), focus primarily on alignment during training phase. However, these methods often involve complex and resource-intensive training processes, posing significant challenge for their implementation. Therefore, we propose InferAligner, a simple yet effective method for harmlessness alignment during inference phase. InferAligner decouples harmlessness from helpfulness. During the training phase, it focuses solely on enhancing the target model’s capabilities on downstream tasks. In the inference phase, it utilizes safety steering vectors extracted from the aligned model to guide the target model towards harmlessness alignment. Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics, as well as to multimodal large language models (MLLMs) such as LLaVA. It significantly diminishes the attack success rate (ASR) of both harmful instructions and jailbreak instructions, while maintaining almost unchanged performance in downstream tasks.

pdf bib
Sparsity-Accelerated Training for Large Language Models
Da Ma | Lu Chen | Pengyu Wang | Hongshen Xu | Hanqi Li | Liangtai Sun | Su Zhu | Shuai Fan | Kai Yu
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs) have demonstrated proficiency across various natural language processing (NLP) tasks but often require additional training, such as continual pre-training and supervised fine-tuning. However, the costs associated with this, primarily due to their large parameter count, remain high. This paper proposes leveraging sparsity in pre-trained LLMs to expedite this training process. By observing sparsity in activated neurons during forward iterations, we identify the potential for computational speed-ups by excluding inactive neurons. We address associated challenges by extending existing neuron importance evaluation metrics and introducing a ladder omission rate scheduler. Our experiments on Llama-2 demonstrate that Sparsity-Accelerated Training (SAT) achieves comparable or superior performance to standard training while significantly accelerating the process. Specifically, SAT achieves a 45% throughput improvement in continual pre-training and saves 38% training time in supervised fine-tuning. It offers a simple, hardware-agnostic, and easily deployable framework for additional LLM training.

pdf bib
The Open-World Lottery Ticket Hypothesis for OOD Intent Classification
Yunhua Zhou | Pengyu Wang | Peiju Liu | Yuxin Wang | Xipeng Qiu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Most existing methods of Out-of-Domain (OOD) intent classification rely on extensive auxiliary OOD corpora or specific training paradigms. However, they are underdeveloped in the underlying principle that the models should have differentiated confidence in In- and Out-of-domain intent. In this work, we shed light on the fundamental cause of model overconfidence on OOD and demonstrate that calibrated subnetworks can be uncovered by pruning the overparameterized model. Calibrated confidence provided by the subnetwork can better distinguish In- and Out-of-domain, which can be a benefit for almost all post hoc methods. In addition to bringing fundamental insights, we also extend the Lottery Ticket Hypothesis to open-world scenarios. We conduct extensive experiments on four real-world datasets to demonstrate our approach can establish consistent improvements compared with a suite of competitive baselines.

2023

pdf bib
Two Birds One Stone: Dynamic Ensemble for OOD Intent Classification
Yunhua Zhou | Jianqiang Yang | Pengyu Wang | Xipeng Qiu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Out-of-domain (OOD) intent classification is an active field of natural language understanding, which is of great practical significance for intelligent devices such as the Task-Oriented Dialogue System. It mainly contains two challenges: it requires the model to know what it knows and what it does not know. This paper investigates “overthinking” in the open-world scenario and its impact on OOD intent classification. Inspired by this, we propose a two-birds-one-stone method, which allows the model to decide whether to make a decision on OOD classification early during inference and can ensure accuracy and accelerate inference. At the same time, to adapt to the behavior of dynamic inference, we also propose a training method based on ensemble methods. In addition to bringing certain theoretical insights, we also conduct detailed experiments on three real-world intent datasets. Compared with the previous baselines, our method can not only improve inference speed, but also achieve significant performance improvements.

pdf bib
SeqXGPT: Sentence-Level AI-Generated Text Detection
Pengyu Wang | Linyang Li | Ke Ren | Botian Jiang | Dong Zhang | Xipeng Qiu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Widely applied large language models (LLMs) can generate human-like content, raising concerns about the abuse of LLMs. Therefore, it is important to build strong AI-generated text (AIGT) detectors. Current works only consider document-level AIGT detection, therefore, in this paper, we first introduce a sentence-level detection challenge by synthesizing a dataset that contains documents that are polished with LLMs, that is, the documents contain sentences written by humans and sentences modified by LLMs. Then we propose Sequence X (Check) GPT, a novel method that utilizes log probability lists from white-box LLMs as features for sentence-level AIGT detection. These features are composed like waves in speech processing and cannot be studied by LLMs. Therefore, we build SeqXGPT based on convolution and self-attention networks. We test it in both sentence and document-level detection challenges. Experimental results show that previous methods struggle in solving sentence-level AIGT detection, while our method not only significantly surpasses baseline methods in both sentence and document-level detection challenges but also exhibits strong generalization capabilities.

pdf bib
Watermarking LLMs with Weight Quantization
Linyang Li | Botian Jiang | Pengyu Wang | Ke Ren | Hang Yan | Xipeng Qiu
Findings of the Association for Computational Linguistics: EMNLP 2023

Abuse of large language models reveals high risks as large language models are being deployed at an astonishing speed. It is important to protect the model weights to avoid malicious usage that violates licenses of open-source large language models. This paper proposes a novel watermarking strategy that plants watermarks in the quantization process of large language models without pre-defined triggers during inference. The watermark works when the model is used in the fp32 mode and remains hidden when the model is quantized to int8, in this way, the users can only inference the model without further supervised fine-tuning of the model. We successfully plant the watermark into open-source large language model weights including GPT-Neo and LLaMA. We hope our proposed method can provide a potential direction for protecting model weights in the era of large language model applications.

pdf bib
PerturbScore: Connecting Discrete and Continuous Perturbations in NLP
Linyang Li | Ke Ren | Yunfan Shao | Pengyu Wang | Xipeng Qiu
Findings of the Association for Computational Linguistics: EMNLP 2023

With the rapid development of neural network applications in NLP, model robustness problem is gaining more attention. Different from computer vision, the discrete nature of texts makes it more challenging to explore robustness in NLP. Therefore, in this paper, we aim to connect discrete perturbations with continuous perturbations, therefore we can use such connections as a bridge to help understand discrete perturbations in NLP models. Specifically, we first explore how to connect and measure the correlation between discrete perturbations and continuous perturbations. Then we design a regression task as a PerturbScore to learn the correlation automatically. Through experimental results, we find that we can build a connection between discrete and continuous perturbations and use the proposed PerturbScore to learn such correlation, surpassing previous methods used in discrete perturbation measuring. Further, the proposed PerturbScore can be well generalized to different datasets, perturbation methods, indicating that we can use it as a powerful tool to study model robustness in NLP.

pdf bib
SpeechGPT: Empowering Large Language Models with Intrinsic Cross-Modal Conversational Abilities
Dong Zhang | Shimin Li | Xin Zhang | Jun Zhan | Pengyu Wang | Yaqian Zhou | Xipeng Qiu
Findings of the Association for Computational Linguistics: EMNLP 2023

Multi-modal large language models are regarded as a crucial step towards Artificial General Intelligence (AGI) and have garnered significant interest with the emergence of ChatGPT. However, current speech-language models typically adopt the cascade paradigm, preventing inter-modal knowledge transfer. In this paper, we propose SpeechGPT, a large language model with intrinsic cross-modal conversational abilities, capable of perceiving and generating multi-modal content. With discrete speech representations, we construct SpeechInstruct, the first large-scale cross-modal speech instruction dataset. Additionally, we employ a three-stage training strategy that includes modality-adaptation pre-training, cross-modal instruction fine-tuning, and chain-of-modality instruction fine-tuning. The experimental results demonstrate that SpeechGPT has an impressive capacity to follow cross-modal human instructions and highlight the potential of handling multiple modalities with one model. Code and models are available in https://github.com/0nutation/SpeechGPT. Demos are shown in https://0nutation.github.io/SpeechGPT.github.io/.

2022

pdf bib
The Uncertainty-based Retrieval Framework for Ancient Chinese CWS and POS
Pengyu Wang | Zhichen Ren
Proceedings of the Second Workshop on Language Technologies for Historical and Ancient Languages

Automatic analysis for modern Chinese has greatly improved the accuracy of text mining in related fields, but the study of ancient Chinese is still relatively rare. Ancient text division and lexical annotation are important parts of classical literature comprehension, and previous studies have tried to construct auxiliary dictionary and other fused knowledge to improve the performance. In this paper, we propose a framework for ancient Chinese Word Segmentation and Part-of-Speech Tagging that makes a twofold effort: on the one hand, we try to capture the wordhood semantics; on the other hand, we re-predict the uncertain samples of baseline model by introducing external knowledge. The performance of our architecture outperforms pre-trained BERT with CRF and existing tools such as Jiayan.

2013

pdf bib
Collapsed Variational Bayesian Inference for PCFGs
Pengyu Wang | Phil Blunsom
Proceedings of the Seventeenth Conference on Computational Natural Language Learning