Reinald Kim Amplayo

Also published as: Reinald Kim Amplayo


2024

pdf bib
Learning to Plan and Generate Text with Citations
Constanza Fierro | Reinald Kim Amplayo | Fantine Huot | Nicola De Cao | Joshua Maynez | Shashi Narayan | Mirella Lapata
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The increasing demand for the deployment of LLMs in information-seeking scenarios has spurred efforts in creating verifiable systems, which generate responses to queries along with supporting evidence. In this paper, we explore the attribution capabilities of plan-based models which have been recently shown to improve the faithfulness, grounding, and controllability of generated text. We conceptualize plans as a sequence of questions which serve as blueprints of the generated content and its organization. We propose two attribution models that utilize different variants of blueprints, an abstractive model where questions are generated from scratch, and an extractive model where questions are copied from the input. Experiments on long-form question-answering show that planning consistently improves attribution quality. Moreover, the citations generated by blueprint models are more accurate compared to those obtained from LLM-based pipelines lacking a planning component.

pdf bib
𝜇PLAN: Summarizing using a Content Plan as Cross-Lingual Bridge
Fantine Huot | Joshua Maynez | Chris Alberti | Reinald Kim Amplayo | Priyanka Agrawal | Constanza Fierro | Shashi Narayan | Mirella Lapata
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Cross-lingual summarization aims to generate a summary in one languagegiven input in a different language, allowing for the dissemination ofrelevant content among different language speaking populations. Thetask is challenging mainly due to the paucity of cross-lingualdatasets and the compounded difficulty of summarizing andtranslating.This work presents 𝜇PLAN, an approach to cross-lingual summarization that uses an intermediate planning step as a cross-lingual bridge. We formulate the plan as a sequence of entities capturing thesummary’s content and the order in which it should becommunicated. Importantly, our plans abstract from surface form: usinga multilingual knowledge base, we align entities to their canonicaldesignation across languages and generate the summary conditioned onthis cross-lingual bridge and the input. Automatic and human evaluation on the XWikis dataset (across four language pairs) demonstrates that our planning objective achieves state-of-the-art performance interms of informativeness and faithfulness. Moreover, 𝜇PLAN modelsimprove the zero-shot transfer to new cross-lingual language pairscompared to baselines without a planning component.

pdf bib
Scalable and Domain-General Abstractive Proposition Segmentation
Mohammad Javad Hosseini | Yang Gao | Tim Baumgärtner | Alex Fabrikant | Reinald Kim Amplayo
Findings of the Association for Computational Linguistics: EMNLP 2024

Segmenting text into fine-grained units of meaning is important to a wide range of NLP applications. The default approach of segmenting text into sentences is often insufficient, especially since sentences are usually complex enough to include multiple units of meaning that merit separate treatment in the downstream task. We focus on the task of abstractive proposition segmentation (APS): transforming text into simple, self-contained, well-formed sentences. Several recent works have demonstrated the utility of proposition segmentation with few-shot prompted LLMs for downstream tasks such as retrieval-augmented grounding and fact verification. However, this approach does not scale to large amounts of text and may not always extract all the facts from the input text.In this paper, we first introduce evaluation metrics for the task to measure several dimensions of quality.We then propose a scalable, yet accurate, proposition segmentation model. We model proposition segmentation as a supervised task by training LLMs on existing annotated datasets and show that training yields significantly improved results. We further show that by using the fine-tuned LLMs (Gemini Pro and Gemini Ultra) as teachers for annotating large amounts of multi-domain synthetic distillation data, we can train smaller student models (Gemma 1 2B and 7B) with results similar to the teacher LLMs. We then demonstrate that our technique leads to effective domain generalization, by annotating data in two domains outside the original training data and evaluating on them. Finally, as a key contribution of the paper, we share an easy-to-use API for NLP practitioners to use.

2023

pdf bib
Query Refinement Prompts for Closed-Book Long-Form QA
Reinald Kim Amplayo | Kellie Webster | Michael Collins | Dipanjan Das | Shashi Narayan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have been shown to perform well in answering questions and in producing long-form texts, both in few-shot closed-book settings. While the former can be validated using well-known evaluation metrics, the latter is difficult to evaluate. We resolve the difficulties to evaluate long-form output by doing both tasks at once – to do question answering that requires long-form answers. Such questions tend to be multifaceted, i.e., they may have ambiguities and/or require information from multiple sources. To this end, we define query refinement prompts that encourage LLMs to explicitly express the multifacetedness in questions and generate long-form answers covering multiple facets of the question. Our experiments on two long-form question answering datasets, ASQA and AQuAMuSe, show that using our prompts allows us to outperform fully finetuned models in the closed book setting, as well as achieve results comparable to retrieve-then-generate open-book models.

pdf bib
Text-Blueprint: An Interactive Platform for Plan-based Conditional Generation
Fantine Huot | Joshua Maynez | Shashi Narayan | Reinald Kim Amplayo | Kuzman Ganchev | Annie Priyadarshini Louis | Anders Sandholm | Dipanjan Das | Mirella Lapata
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

While conditional generation models can now generate natural language well enough to create fluent text, it is still difficult to control the generation process, leading to irrelevant, repetitive, and hallucinated content. Recent work shows that planning can be a useful intermediate step to render conditional generation less opaque and more grounded. We present a web browser-based demonstration for query-focused summarization that uses a sequence of question-answer pairs, as a blueprint plan for guiding text generation (i.e., what to say and in what order). We illustrate how users may interact with the generated text and associated plan visualizations, e.g., by editing and modifying the plan in order to improve or control the generated output.A short video demonstrating our system is available at https://goo.gle/text-blueprint-demo

pdf bib
Conditional Generation with a Question-Answering Blueprint
Shashi Narayan | Joshua Maynez | Reinald Kim Amplayo | Kuzman Ganchev | Annie Louis | Fantine Huot | Anders Sandholm | Dipanjan Das | Mirella Lapata
Transactions of the Association for Computational Linguistics, Volume 11

The ability to convey relevant and faithful information is critical for many tasks in conditional generation and yet remains elusive for neural seq-to-seq models whose outputs often reveal hallucinations and fail to correctly cover important details. In this work, we advocate planning as a useful intermediate representation for rendering conditional generation less opaque and more grounded. We propose a new conceptualization of text plans as a sequence of question-answer (QA) pairs and enhance existing datasets (e.g., for summarization) with a QA blueprint operating as a proxy for content selection (i.e., what to say) and planning (i.e., in what order). We obtain blueprints automatically by exploiting state-of-the-art question generation technology and convert input-output pairs into input-blueprint-output tuples. We develop Transformer-based models, each varying in how they incorporate the blueprint in the generated output (e.g., as a global plan or iteratively). Evaluation across metrics and datasets demonstrates that blueprint models are more factual than alternatives which do not resort to planning and allow tighter control of the generation output.

2022

pdf bib
Attribute Injection for Pretrained Language Models: A New Benchmark and an Efficient Method
Reinald Kim Amplayo | Kang Min Yoo | Sang-Woo Lee
Proceedings of the 29th International Conference on Computational Linguistics

Metadata attributes (e.g., user and product IDs from reviews) can be incorporated as additional inputs to neural-based NLP models, by expanding the architecture of the models to improve performance. However, recent models rely on pretrained language models (PLMs), in which previously used techniques for attribute injection are either nontrivial or cost-ineffective. In this paper, we introduce a benchmark for evaluating attribute injection models, which comprises eight datasets across a diverse range of tasks and domains and six synthetically sparsified ones. We also propose a lightweight and memory-efficient method to inject attributes into PLMs. We extend adapters, i.e. tiny plug-in feed-forward modules, to include attributes both independently of or jointly with the text. We use approximation techniques to parameterize the model efficiently for domains with large attribute vocabularies, and training mechanisms to handle multi-labeled and sparse attributes. Extensive experiments and analyses show that our method outperforms previous attribute injection methods and achieves state-of-the-art performance on all datasets.

pdf bib
Modularized Transfer Learning with Multiple Knowledge Graphs for Zero-shot Commonsense Reasoning
Yu Jin Kim | Beong-woo Kwak | Youngwook Kim | Reinald Kim Amplayo | Seung-won Hwang | Jinyoung Yeo
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Commonsense reasoning systems should be able to generalize to diverse reasoning cases. However, most state-of-the-art approaches depend on expensive data annotations and overfit to a specific benchmark without learning how to perform general semantic reasoning. To overcome these drawbacks, zero-shot QA systems have shown promise as a robust learning scheme by transforming a commonsense knowledge graph (KG) into synthetic QA-form samples for model training. Considering the increasing type of different commonsense KGs, this paper aims to extend the zero-shot transfer learning scenario into multiple-source settings, where different KGs can be utilized synergetically. Towards this goal, we propose to mitigate the loss of knowledge from the interference among the different knowledge sources, by developing a modular variant of the knowledge aggregation as a new zero-shot commonsense reasoning framework. Results on five commonsense reasoning benchmarks demonstrate the efficacy of our framework, improving the performance with multiple KGs.

2021

pdf bib
Informative and Controllable Opinion Summarization
Reinald Kim Amplayo | Mirella Lapata
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Opinion summarization is the task of automatically generating summaries for a set of reviews about a specific target (e.g., a movie or a product). Since the number of reviews for each target can be prohibitively large, neural network-based methods follow a two-stage approach where an extractive step first pre-selects a subset of salient opinions and an abstractive step creates the summary while conditioning on the extracted subset. However, the extractive model leads to loss of information which may be useful depending on user needs. In this paper we propose a summarization framework that eliminates the need to rely only on pre-selected content and waste possibly useful information, especially when customizing summaries. The framework enables the use of all input reviews by first condensing them into multiple dense vectors which serve as input to an abstractive model. We showcase an effective instantiation of our framework which produces more informative summaries and also allows to take user preferences into account using our zero-shot customization technique. Experimental results demonstrate that our model improves the state of the art on the Rotten Tomatoes dataset and generates customized summaries effectively.

pdf bib
Aspect-Controllable Opinion Summarization
Reinald Kim Amplayo | Stefanos Angelidis | Mirella Lapata
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent work on opinion summarization produces general summaries based on a set of input reviews and the popularity of opinions expressed in them. In this paper, we propose an approach that allows the generation of customized summaries based on aspect queries (e.g., describing the location and room of a hotel). Using a review corpus, we create a synthetic training dataset of (review, summary) pairs enriched with aspect controllers which are induced by a multi-instance learning model that predicts the aspects of a document at different levels of granularity. We fine-tune a pretrained model using our synthetic dataset and generate aspect-specific summaries by modifying the aspect controllers. Experiments on two benchmarks show that our model outperforms the previous state of the art and generates personalized summaries by controlling the number of aspects discussed in them.

pdf bib
Extractive Opinion Summarization in Quantized Transformer Spaces
Stefanos Angelidis | Reinald Kim Amplayo | Yoshihiko Suhara | Xiaolan Wang | Mirella Lapata
Transactions of the Association for Computational Linguistics, Volume 9

We present the Quantized Transformer (QT), an unsupervised system for extractive opinion summarization. QT is inspired by Vector- Quantized Variational Autoencoders, which we repurpose for popularity-driven summarization. It uses a clustering interpretation of the quantized space and a novel extraction algorithm to discover popular opinions among hundreds of reviews, a significant step towards opinion summarization of practical scope. In addition, QT enables controllable summarization without further training, by utilizing properties of the quantized space to extract aspect-specific summaries. We also make publicly available Space, a large-scale evaluation benchmark for opinion summarizers, comprising general and aspect-specific summaries for 50 hotels. Experiments demonstrate the promise of our approach, which is validated by human studies where judges showed clear preference for our method over competitive baselines.

2020

pdf bib
Heads-up! Unsupervised Constituency Parsing via Self-Attention Heads
Bowen Li | Taeuk Kim | Reinald Kim Amplayo | Frank Keller
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Transformer-based pre-trained language models (PLMs) have dramatically improved the state of the art in NLP across many tasks. This has led to substantial interest in analyzing the syntactic knowledge PLMs learn. Previous approaches to this question have been limited, mostly using test suites or probes. Here, we propose a novel fully unsupervised parsing approach that extracts constituency trees from PLM attention heads. We rank transformer attention heads based on their inherent properties, and create an ensemble of high-ranking heads to produce the final tree. Our method is adaptable to low-resource languages, as it does not rely on development sets, which can be expensive to annotate. Our experiments show that the proposed method often outperform existing approaches if there is no development set present. Our unsupervised parser can also be used as a tool to analyze the grammars PLMs learn implicitly. For this, we use the parse trees induced by our method to train a neural PCFG and compare it to a grammar derived from a human-annotated treebank.

pdf bib
Unsupervised Opinion Summarization with Noising and Denoising
Reinald Kim Amplayo | Mirella Lapata
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The supervised training of high-capacity models on large datasets containing hundreds of thousands of document-summary pairs is critical to the recent success of deep learning techniques for abstractive summarization. Unfortunately, in most domains (other than news) such training data is not available and cannot be easily sourced. In this paper we enable the use of supervised learning for the setting where there are only documents available (e.g., product or business reviews) without ground truth summaries. We create a synthetic dataset from a corpus of user reviews by sampling a review, pretending it is a summary, and generating noisy versions thereof which we treat as pseudo-review input. We introduce several linguistically motivated noise generation functions and a summarization model which learns to denoise the input and generate the original review. At test time, the model accepts genuine reviews and generates a summary containing salient opinions, treating those that do not reach consensus as noise. Extensive automatic and human evaluation shows that our model brings substantial improvements over both abstractive and extractive baselines.

pdf bib
Retrieval-Augmented Controllable Review Generation
Jihyeok Kim | Seungtaek Choi | Reinald Kim Amplayo | Seung-won Hwang
Proceedings of the 28th International Conference on Computational Linguistics

In this paper, we study review generation given a set of attribute identifiers which are user ID, product ID and rating. This is a difficult subtask of natural language generation since models are limited to the given identifiers, without any specific descriptive information regarding the inputs, when generating the text. The capacity of these models is thus confined and dependent to how well the models can capture vector representations of attributes. We thus propose to additionally leverage references, which are selected from a large pool of texts labeled with one of the attributes, as textual information that enriches inductive biases of given attributes. With these references, we can now pose the problem as an instance of text-to-text generation, which makes the task easier since texts that are syntactically, semantically similar with the output text are provided as input. Using this framework, we address issues such as selecting references from a large candidate set without textual context and improving the model complexity for generation. Our experiments show that our models improve over previous approaches on both automatic and human evaluation metrics.

2019

pdf bib
Rethinking Attribute Representation and Injection for Sentiment Classification
Reinald Kim Amplayo
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Text attributes, such as user and product information in product reviews, have been used to improve the performance of sentiment classification models. The de facto standard method is to incorporate them as additional biases in the attention mechanism, and more performance gains are achieved by extending the model architecture. In this paper, we show that the above method is the least effective way to represent and inject attributes. To demonstrate this hypothesis, unlike previous models with complicated architectures, we limit our base model to a simple BiLSTM with attention classifier, and instead focus on how and where the attributes should be incorporated in the model. We propose to represent attributes as chunk-wise importance weight matrices and consider four locations in the model (i.e., embedding, encoding, attention, classifier) to inject attributes. Experiments show that our proposed method achieves significant improvements over the standard approach and that attention mechanism is the worst location to inject attributes, contradicting prior work. We also outperform the state-of-the-art despite our use of a simple base model. Finally, we show that these representations transfer well to other tasks. Model implementation and datasets are released here: https://github.com/rktamplayo/CHIM.

pdf bib
Evaluating Research Novelty Detection: Counterfactual Approaches
Reinald Kim Amplayo | Seung-won Hwang | Min Song
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)

In this paper, we explore strategies to evaluate models for the task research paper novelty detection: Given all papers released at a given date, which of the papers discuss new ideas and influence future research? We find the novelty is not a singular concept, and thus inherently lacks of ground truth annotations with cross-annotator agreement, which is a major obstacle in evaluating these models. Test-of-time award is closest to such annotation, which can only be made retrospectively and is extremely scarce. We thus propose to compare and evaluate models using counterfactual simulations. First, we ask models if they can differentiate papers at time t and counterfactual paper from future time t+d. Second, we ask models if they can predict test-of-time award at t+d. These are proxies that can be agreed by human annotators and easily augmented by correlated signals, using which evaluation can be done through four tasks: classification, ranking, correlation and feature selection. We show these proxy evaluation methods complement each other regarding error handling, coverage, interpretability, and scope, and thus altogether contribute to the observation of the relative strength of existing models.

pdf bib
Categorical Metadata Representation for Customized Text Classification
Jihyeok Kim | Reinald Kim Amplayo | Kyungjae Lee | Sua Sung | Minji Seo | Seung-won Hwang
Transactions of the Association for Computational Linguistics, Volume 7

The performance of text classification has improved tremendously using intelligently engineered neural-based models, especially those injecting categorical metadata as additional information, e.g., using user/product information for sentiment classification. This information has been used to modify parts of the model (e.g., word embeddings, attention mechanisms) such that results can be customized according to the metadata. We observe that current representation methods for categorical metadata, which are devised for human consumption, are not as effective as claimed in popular classification methods, outperformed even by simple concatenation of categorical features in the final layer of the sentence encoder. We conjecture that categorical features are harder to represent for machine use, as available context only indirectly describes the category, and even such context is often scarce (for tail category). To this end, we propose using basis vectors to effectively incorporate categorical metadata on various parts of a neural-based model. This additionally decreases the number of parameters dramatically, especially when the number of categorical features is large. Extensive experiments on various data sets with different properties are performed and show that through our method, we can represent categorical metadata more effectively to customize parts of the model, including unexplored ones, and increase the performance of the model greatly.

pdf bib
ThisIsCompetition at SemEval-2019 Task 9: BERT is unstable for out-of-domain samples
Cheoneum Park | Juae Kim | Hyeon-gu Lee | Reinald Kim Amplayo | Harksoo Kim | Jungyun Seo | Changki Lee
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes our system, Joint Encoders for Stable Suggestion Inference (JESSI), for the SemEval 2019 Task 9: Suggestion Mining from Online Reviews and Forums. JESSI is a combination of two sentence encoders: (a) one using multiple pre-trained word embeddings learned from log-bilinear regression (GloVe) and translation (CoVe) models, and (b) one on top of word encodings from a pre-trained deep bidirectional transformer (BERT). We include a domain adversarial training module when training for out-of-domain samples. Our experiments show that while BERT performs exceptionally well for in-domain samples, several runs of the model show that it is unstable for out-of-domain samples. The problem is mitigated tremendously by (1) combining BERT with a non-BERT encoder, and (2) using an RNN-based classifier on top of BERT. Our final models obtained second place with 77.78% F-Score on Subtask A (i.e. in-domain) and achieved an F-Score of 79.59% on Subtask B (i.e. out-of-domain), even without using any additional external data.

2018

pdf bib
Visual Choice of Plausible Alternatives: An Evaluation of Image-based Commonsense Causal Reasoning
Jinyoung Yeo | Gyeongbok Lee | Gengyu Wang | Seungtaek Choi | Hyunsouk Cho | Reinald Kim Amplayo | Seung-won Hwang
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Entity Commonsense Representation for Neural Abstractive Summarization
Reinald Kim Amplayo | Seonjae Lim | Seung-won Hwang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

A major proportion of a text summary includes important entities found in the original text. These entities build up the topic of the summary. Moreover, they hold commonsense information once they are linked to a knowledge base. Based on these observations, this paper investigates the usage of linked entities to guide the decoder of a neural text summarizer to generate concise and better summaries. To this end, we leverage on an off-the-shelf entity linking system (ELS) to extract linked entities and propose Entity2Topic (E2T), a module easily attachable to a sequence-to-sequence model that transforms a list of entities into a vector representation of the topic of the summary. Current available ELS’s are still not sufficiently effective, possibly introducing unresolved ambiguities and irrelevant entities. We resolve the imperfections of the ELS by (a) encoding entities with selective disambiguation, and (b) pooling entity vectors using firm attention. By applying E2T to a simple sequenceto-sequence model with attention mechanism as base model, we see significant improvements of the performance in the Gigaword (sentence to title) and CNN (long document to multi-sentence highlights) summarization datasets by at least 2 ROUGE points.

pdf bib
Cold-Start Aware User and Product Attention for Sentiment Classification
Reinald Kim Amplayo | Jihyeok Kim | Sua Sung | Seung-won Hwang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The use of user/product information in sentiment analysis is important, especially for cold-start users/products, whose number of reviews are very limited. However, current models do not deal with the cold-start problem which is typical in review websites. In this paper, we present Hybrid Contextualized Sentiment Classifier (HCSC), which contains two modules: (1) a fast word encoder that returns word vectors embedded with short and long range dependency features; and (2) Cold-Start Aware Attention (CSAA), an attention mechanism that considers the existence of cold-start problem when attentively pooling the encoded word vectors. HCSC introduces shared vectors that are constructed from similar users/products, and are used when the original distinct vectors do not have sufficient information (i.e. cold-start). This is decided by a frequency-guided selective gate vector. Our experiments show that in terms of RMSE, HCSC performs significantly better when compared with on famous datasets, despite having less complexity, and thus can be trained much faster. More importantly, our model performs significantly better than previous models when the training data is sparse and has cold-start problems.

2016

pdf bib
Building Content-driven Entity Networks for Scarce Scientific Literature using Content Information
Reinald Kim Amplayo | Min Song
Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM2016)

This paper proposes several network construction methods for collections of scarce scientific literature data. We define scarcity as lacking in value and in volume. Instead of using the paper’s metadata to construct several kinds of scientific networks, we use the full texts of the articles and automatically extract the entities needed to construct the networks. Specifically, we present seven kinds of networks using the proposed construction methods: co-occurrence networks for author, keyword, and biological entities, and citation networks for author, keyword, biological, and topic entities. We show two case studies that applies our proposed methods: CADASIL, a rare yet the most common form of hereditary stroke disorder, and Metformin, the first-line medication to the type 2 diabetes treatment. We apply our proposed method to four different applications for evaluation: finding prolific authors, finding important bio-entities, finding meaningful keywords, and discovering influential topics. The results show that the co-occurrence and citation networks constructed using the proposed method outperforms the traditional-based networks. We also compare our proposed networks to traditional citation networks constructed using enough data and infer that even with the same amount of enough data, our methods perform comparably or better than the traditional methods.