Machine learning models have made incredible progress, but they still struggle when applied to examples from unseen domains. This study focuses on a specific problem of domain generalization, where a model is trained on one source domain and tested on multiple target domains that are unseen during training. We propose IMO: Invariant features Masks for Out-of-Distribution text classification, to achieve OOD generalization by learning invariant features. During training, IMO would learn sparse mask layers to remove irrelevant features for prediction, where the remaining features keep invariant. Additionally, IMO has an attention module at the token level to focus on tokens that are useful for prediction. Our comprehensive experiments show that IMO substantially outperforms strong baselines in terms of various evaluation metrics and settings.
Detecting critical moments, such as emotional outbursts or changes in decisions during conversations, is crucial for understanding shifts in human behavior and their consequences. Our work introduces a novel problem setting focusing on these moments as turning points (TPs), accompanied by a meticulously curated, high-consensus, human-annotated multi-modal dataset. We provide precise timestamps, descriptions, and visual-textual evidence high-lighting changes in emotions, behaviors, perspectives, and decisions at these turning points. We also propose a framework, TPMaven, utilizing state-of-the-art vision-language models to construct a narrative from the videos and large language models to classify and detect turning points in our multi-modal dataset. Evaluation results show that TPMaven achieves an F1-score of 0.88 in classification and 0.61 in detection, with additional explanations aligning with human expectations.
Sociocultural norms serve as guiding principles for personal conduct in social interactions within a particular society or culture. The study of norm discovery has seen significant development over the last few years, with various interesting approaches. However, it is difficult to adopt these approaches to discover norms in a new culture, as they rely either on human annotations or real-world dialogue contents. This paper presents a robust automatic norm discovery pipeline, which utilizes the cultural knowledge of GPT-3.5 Turbo (ChatGPT) along with several social factors. By using these social factors and ChatGPT, our pipeline avoids the use of human dialogues that tend to be limited to specific scenarios, as well as the use of human annotations that make it difficult and costly to enlarge the dataset. The resulting database - Multi-cultural Norm Base (MNB) - covers 6 distinct cultures, with over 150k sociocultural norm statements in total. A state-of-the-art Large Language Model (LLM), Llama 3, fine-tuned with our proposed dataset, shows remarkable results on various downstream tasks, outperforming models fine-tuned on other datasets significantly.
Large Multimodal Models (LMMs) have achieved great success recently, demonstrating a strong capability to understand multimodal information and to interact with human users. Despite the progress made, the challenge of detecting high-risk interactions in multimodal settings, and in particular in speech modality, remains largely unexplored. Conventional research on risk for speech modality primarily emphasises the content (e.g., what is captured as transcription). However, in speech-based interactions, paralinguistic cues in audio can significantly alter the intended meaning behind utterances. In this work, we propose a speech-specific risk taxonomy, covering 8 risk categories under hostility (malicious sarcasm and threats), malicious imitation (age, gender, ethnicity), and stereotypical biases (age, gender, ethnicity). Based on the taxonomy, we create a small-scale dataset for evaluating current LMMs capability in detecting these categories of risk. We observe even the latest models remain ineffective to detect various paralinguistic-specific risks in speech (e.g., Gemini 1.5 Pro is performing only slightly above random baseline). Warning: this paper contains biased and offensive examples.
Large language models (LLMs) are typically fine-tuned on diverse and extensive datasets sourced from various origins to develop a comprehensive range of skills, such as writing, reasoning, chatting, coding, and more. Each skill has unique characteristics, and these datasets are often heterogeneous and imbalanced, making the fine-tuning process highly challenging. Balancing the development of each skill while ensuring the model maintains its overall performance requires sophisticated techniques and careful dataset curation. In this work, we propose a general, model-agnostic, reinforcement learning framework, Mixture-of-Skills (MoS), that learns to optimize data usage automatically during the fine-tuning process. This framework ensures the optimal comprehensive skill development of LLMs by dynamically adjusting the focus on different datasets based on their current learning state. To validate the effectiveness of MoS, we conduct extensive experiments using three diverse LLM backbones on two widely used benchmarks and demonstrate that MoS substantially enhances model performance. Building on the success of MoS, we propose MoSpec, an adaptation for task-specific fine-tuning, which harnesses the utilities of various datasets for a specific purpose. Our work underlines the significance of dataset rebalancing and present MoS as a powerful, general solution for optimizing data usage in the fine-tuning of LLMs for various purposes.
Large Multimodal Models (LMMs) have achieved strong performance across a range of vision and language tasks. However, their spatial reasoning capabilities are under-investigated. In this paper, we construct a novel VQA dataset, Spatial-MM, to comprehensively study LMMs’ spatial understanding and reasoning capabilities. Our analyses on object-relationship and multi-hop reasoning reveal several important findings. Firstly, bounding boxes and scene graphs, even synthetic ones, can significantly enhance LMMs’ spatial reasoning. Secondly, LMMs struggle more with questions posed from the human perspective than the camera perspective about the image. Thirdly, chain of thought (CoT) prompting does not improve model performance on complex multi-hop questions involving spatial relations. Moreover, spatial reasoning steps are much less accurate than non-spatial ones across MLLMs. Lastly, our perturbation analysis on GQA-spatial reveals that LMMs are much stronger at basic object detection than complex spatial reasoning. We believe our new benchmark dataset and in-depth analyses can spark further research on LMMs spatial reasoning.
Post-editing has proven effective in improving the quality of text generated by large language models (LLMs) such as GPT-3.5 or GPT-4, particularly when direct updating of their parameters to enhance text quality is infeasible or expensive. However, relying solely on smaller language models for post-editing can limit the LLMs’ ability to generalize across domains. Moreover, the editing strategies in these methods are not optimally designed for text generation tasks. To address these limitations, we propose a neural programmer-interpreter approach that preserves the domain generalization ability of LLMs while editing their output. The editing actions in this framework are specifically devised for text generation. Extensive experiments demonstrate that the programmer-interpreter significantly enhances GPT-3.5’s performance in logical form-to-text conversion and low-resource machine translation, surpassing other state-of-the-art (SOTA) LLM post-editing methods in cross-domain settings.
Negotiation is a crucial ability in human communication. Recently, there has been a resurgent research interest in negotiation dialogue systems, whose goal is to create intelligent agents that can assist people in resolving conflicts or reaching agreements. Although there have been many explorations into negotiation dialogue systems, a systematic review of this task has not been performed to date. We aim to fill this gap by investigating recent studies in the field of negotiation dialogue systems, and covering benchmarks, evaluations and methodologies within the literature. We also discuss potential future directions, including multi-modal, multi-party and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.
Norm violations occur when individuals fail to conform to culturally accepted behaviors, which may lead to potential conflicts. Remediating norm violations requires social awareness and cultural sensitivity of the nuances at play. To equip interactive AI systems with a remediation ability, we offer ReNoVi — a large-scale corpus of 9,258 multi-turn dialogues annotated with social norms, as well as define a sequence of tasks to help understand and remediate norm violations step by step. ReNoVi consists of two parts: 512 human-authored dialogues (real data), and 8,746 synthetic conversations generated by ChatGPT through prompt learning. While collecting sufficient human-authored data is costly, synthetic conversations provide suitable amounts of data to help mitigate the scarcity of training data, as well as the chance to assess the alignment between LLMs and humans in the awareness of social norms. We thus harness the power of ChatGPT to generate synthetic training data for our task. To ensure the quality of both human-authored and synthetic data, we follow a quality control protocol during data collection. Our experimental results demonstrate the importance of remediating norm violations in socio-cultural conversations, as well as the improvement in performance obtained from synthetic data.
We develop assistive agents based on Large Language Models (LLMs) that aid interlocutors in business negotiations.Specifically, we simulate business negotiations by letting two LLM-based agents engage in role play. A third LLM acts as a remediator agent to rewrite utterances violating norms for improving negotiation outcomes.We introduce a simple tuning-free and label-free In-Context Learning (ICL) method to identify high-quality ICL exemplars for the remediator, where we propose a novel select criteria, called value impact, to measure the quality of the negotiation outcomes. We provide rich empirical evidence to demonstrate its effectiveness in negotiations across three different negotiation topics. We have released our source code and the generated dataset at: https://github.com/tk1363704/SADAS.
This paper tackles the task of emotion-cause pair extraction in the unsupervised domain adaptation setting.The problem is challenging as the distributions of the events causing emotions in target domains are dramatically different than those in source domains, despite the distributions of emotional expressions between domains are overlapped. Inspired by causal discovery,we propose a novel deep latent model in the variational autoencoder (VAE) framework, which not only captures the underlying latent structures of data but also utilizes the easily transferable knowledge of emotions as the bridge to link the distributions of events in different domains. To facilitate knowledge transfer across domains, we also propose a novel variational posterior regularization technique to disentangle the latent representations of emotions from those of events in order to mitigate the damage caused by the spurious correlations related to the events in source domains. Through extensive experiments, we demonstrate that our model outperforms the strongest baseline by approximately 11.05% on a Chinese benchmark and 2.45% on a English benchmark in terms of weighted-average F1 score. We have released our source code and the generated dataset publicly at: https://github.com/tk1363704/CAREL-VAE.
Recent advancements in multimodal large language models (MLLMs) have made significant progress in integrating information across various modalities, yet real-world applications in educational and scientific domains remain challenging. This paper introduces the Multimodal Scientific ASR (MS-ASR) task, which focuses on transcribing scientific conference videos by leveraging visual information from slides to enhance the accuracy of technical terminologies. Realized that traditional metrics like WER fall short in assessing performance accurately, prompting the proposal of severity-aware WER (SWER) that considers the content type and severity of ASR errors. We propose the Scientific Vision Augmented ASR (SciVASR) framework as a baseline method, enabling MLLMs to improve transcript quality through post-editing. Evaluations of state-of-the-art MLLMs, including GPT-4o, show a 45% improvement over speech-only baselines, highlighting the importance of multimodal information integration.
Social intelligence is essential for understanding and reasoning about human expressions, intents and interactions. One representative benchmark for its study is Social Intelligence Queries (Social-IQ), a dataset of multiple-choice questions on videos of complex social interactions. We define a comprehensive methodology to study the soundness of Social-IQ, as the soundness of such benchmark datasets is crucial to the investigation of the underlying research problem. We define a comprehensive methodology to study the soundness of Social-IQ, as the soundness of such benchmark datasets is crucial to the investigation of the underlying research problem. Our analysis reveals that Social-IQ contains substantial biases, which can be exploited by a moderately strong language model to learn spurious correlations to achieve perfect performance without being given the context or even the question. We introduce DeSIQ, a new challenging dataset, constructed by applying simple perturbations to Social-IQ. Our empirical analysis shows De-SIQ significantly reduces the biases in the original Social-IQ dataset. Furthermore, we examine and shed light on the effect of model size, model style, learning settings, commonsense knowledge, and multi-modality on the new benchmark performance. Our new dataset, observations and findings open up important research questions for the study of social intelligence.
Previous studies have relied on existing question-answering benchmarks to evaluate the knowledge stored in large language models (LLMs). However, this approach has limitations regarding factual knowledge coverage, as it mostly focuses on generic domains which may overlap with the pretraining data. This paper proposes a framework to systematically assess the factual knowledge of LLMs by leveraging knowledge graphs (KGs). Our framework automatically generates a set of questions and expected answers from the facts stored in a given KG, and then evaluates the accuracy of LLMs in answering these questions. We systematically evaluate the state-of-the-art LLMs with KGs in generic and specific domains. The experiment shows that ChatGPT is consistently the top performer across all domains. We also find that LLMs performance depends on the instruction finetuning, domain and question complexity and is prone to adversarial context.
Text-based games (TGs) are exciting testbeds for developing deep reinforcement learning techniques due to their partially observed environments and large action spaces. In these games, the agent learns to explore the environment via natural language interactions with the game simulator. A fundamental challenge in TGs is the efficient exploration of the large action space when the agent has not yet acquired enough knowledge about the environment. We propose CommExpl, an exploration technique that injects external commonsense knowledge, via a pretrained language model (LM), into the agent during training when the agent is the most uncertain about its next action. Our method exhibits improvement on the collected game scores during the training in four out of nine games from Jericho. Additionally, the produced trajectory of actions exhibit lower perplexity, when tested with a pretrained LM, indicating better closeness to human language.