Modern language models (LMs) need to follow human instructions while being faithful; yet, they often fail to achieve both. Here, we provide concrete evidence of a trade-off between instruction following (i.e., follow open-ended instructions) and faithfulness (i.e., ground responses in given context) when training LMs with these objectives. For instance, fine-tuning LLaMA-7B on instruction following datasets renders it less faithful. Conversely, instruction-tuned Vicuna-7B shows degraded performance at following instructions when further optimized on tasks that require contextual grounding. One common remedy is multi-task learning (MTL) with data mixing, yet it remains far from achieving a synergic outcome. We propose a simple yet effective method that relies on Reject-sampling by Self-instruct with Continued Fine-tuning (ReSet), which significantly outperforms vanilla MTL. Surprisingly, we find that less is more, as training ReSet with high-quality, yet substantially smaller data (three-fold less) yields superior results. Our findings offer a better understanding of objective discrepancies in alignment training of LMs.
Question answering based on retrieval augmented generation (RAG-QA) is an important research topic in NLP and has a wide range of real-world applications. However, most existing datasets for this task are either constructed using a single source corpus or consist of short extractive answers, which fall short of evaluating large language model (LLM) based RAG-QA systems on cross-domain generalization. To address these limitations, we create Long-form RobustQA (LFRQA), a new dataset comprising human-written long-form answers that integrate short extractive answers from multiple documents into a single, coherent narrative, covering 26K queries and large corpora across seven different domains. We further propose RAG-QA Arena by directly comparing model-generated answers against LFRQA’s answers using LLMs as evaluators. We show via extensive experiments that RAG-QA Arena and human judgments on answer quality are highly correlated. Moreover, only 41.3% of the most competitive LLM’s answers are preferred to LFRQA’s answers, demonstrating RAG-QA Arena as a challenging evaluation platform for future research.
Commonsense reasoning is omnipresent in human communications and thus is an important feature for open-domain dialogue systems. However, evaluating commonsense in dialogue systems is still an open challenge. We take the first step by focusing on event commonsense that considers events and their relations, and is crucial in both dialogues and general commonsense reasoning. We propose ACCENT, an event commonsense evaluation metric empowered by commonsense knowledge bases (CSKBs). ACCENT first extracts event-relation tuples from a dialogue, and then evaluates the response by scoring the tuples in terms of their compatibility with the CSKB. To evaluate ACCENT, we construct the first public event commonsense evaluation dataset for open-domain dialogues.Our experiments show that ACCENT is an efficient metric for event commonsense evaluation, which achieves higher correlations with human judgments than existing baselines.
Open-domain question answering (ODQA) is a crucial task in natural language processing. A typical ODQA system relies on a retriever module to select relevant contexts from a large corpus for a downstream reading comprehension model. Existing ODQA datasets consist mainly of Wikipedia corpus, and are insufficient to study models’ generalizability across diverse domains as models are trained and evaluated on the same genre of data. We propose **RobustQA**, a novel benchmark consisting of datasets from 8 different domains, which facilitates the evaluation of ODQA’s domain robustness. To build **RobustQA**, we annotate QA pairs in retrieval datasets with rigorous quality control. We further examine improving QA performances by incorporating unsupervised learning methods with target-domain corpus and adopting large generative language models. These methods can effectively improve model performances on **RobustQA**. However, experimental results demonstrate a significant gap from in-domain training, suggesting that **RobustQA** is a challenging benchmark to evaluate ODQA domain robustness.
Story visualization advances the traditional text-to-image generation by enabling multiple image generation based on a complete story. This task requires machines to 1) understand long text inputs, and 2) produce a globally consistent image sequence that illustrates the contents of the story. A key challenge of consistent story visualization is to preserve characters that are essential in stories. To tackle the challenge, we propose to adapt a recent work that augments VQ-VAE with a text-to-visual-token (transformer) architecture. Specifically, we modify the text-to-visual-token module with a two-stage framework: 1) character token planning model that predicts the visual tokens for characters only; 2) visual token completion model that generates the remaining visual token sequence, which is sent to VQ-VAE for finalizing image generations. To encourage characters to appear in the images, we further train the two-stage framework with a character-token alignment objective. Extensive experiments and evaluations demonstrate that the proposed method excels at preserving characters and can produce higher quality image sequences compared with the strong baselines.
Stories or narratives are comprised of a sequence of events. To compose interesting stories, professional writers often leverage a creative writing technique called *flashback* that inserts past events into current storylines as we commonly observe in novels and plays. However, it is challenging for machines to generate *flashback* as it requires a solid understanding of event **temporal order** (e.g. *feeling hungry* before *eat*, not vice versa), and the creativity to arrange storylines so that earlier events do not always appear first in **narrative order**. Two major issues in existing systems that exacerbate the challenges: 1) temporal bias in pertaining and story datasets that leads to monotonic event temporal orders; 2) lack of explicit guidance that helps machines decide where to insert *flashbacks*. We propose to address these issues using structured storylines to encode events and their pair-wise temporal relations (before, after and vague) as **temporal prompts** that guide how stories should unfold temporally. We leverage a Plan-and-Write framework enhanced by reinforcement learning to generate storylines and stories end-to-end. Evaluation results show that the proposed method can generate more interesting stories with *flashbacks* while maintaining textual diversity, fluency, and temporal coherence.
Answer Sentence Selection (AS2) is an efficient approach for the design of open-domain Question Answering (QA) systems. In order to achieve low latency, traditional AS2 models score question-answer pairs individually, ignoring any information from the document each potential answer was extracted from. In contrast, more computationally expensive models designed for machine reading comprehension tasks typically receive one or more passages as input, which often results in better accuracy. In this work, we present an approach to efficiently incorporate contextual information in AS2 models. For each answer candidate, we first use unsupervised similarity techniques to extract relevant sentences from its source document, which we then feed into an efficient transformer architecture fine-tuned for AS2. Our best approach, which leverages a multi-way attention architecture to efficiently encode context, improves 6% to 11% over non-contextual state of the art in AS2 with minimal impact on system latency. All experiments in this work were conducted in English.
While pre-trained language models (PTLMs) have achieved noticeable success on many NLP tasks, they still struggle for tasks that require event temporal reasoning, which is essential for event-centric applications. We present a continual pre-training approach that equips PTLMs with targeted knowledge about event temporal relations. We design self-supervised learning objectives to recover masked-out event and temporal indicators and to discriminate sentences from their corrupted counterparts (where event or temporal indicators got replaced). By further pre-training a PTLM with these objectives jointly, we reinforce its attention to event and temporal information, yielding enhanced capability on event temporal reasoning. This **E**ffective **CON**tinual pre-training framework for **E**vent **T**emporal reasoning (ECONET) improves the PTLMs’ fine-tuning performances across five relation extraction and question answering tasks and achieves new or on-par state-of-the-art performances in most of our downstream tasks.
Understanding how events are semantically related to each other is the essence of reading comprehension. Recent event-centric reading comprehension datasets focus mostly on event arguments or temporal relations. While these tasks partially evaluate machines’ ability of narrative understanding, human-like reading comprehension requires the capability to process event-based information beyond arguments and temporal reasoning. For example, to understand causality between events, we need to infer motivation or purpose; to establish event hierarchy, we need to understand the composition of events. To facilitate these tasks, we introduce **ESTER**, a comprehensive machine reading comprehension (MRC) dataset for Event Semantic Relation Reasoning. The dataset leverages natural language queries to reason about the five most common event semantic relations, provides more than 6K questions, and captures 10.1K event relation pairs. Experimental results show that the current SOTA systems achieve 22.1%, 63.3% and 83.5% for token-based exact-match (**EM**), **F1** and event-based **HIT@1** scores, which are all significantly below human performances (36.0%, 79.6%, 100% respectively), highlighting our dataset as a challenging benchmark.
We present EventPlus, a temporal event understanding pipeline that integrates various state-of-the-art event understanding components including event trigger and type detection, event argument detection, event duration and temporal relation extraction. Event information, especially event temporal knowledge, is a type of common sense knowledge that helps people understand how stories evolve and provides predictive hints for future events. EventPlus as the first comprehensive temporal event understanding pipeline provides a convenient tool for users to quickly obtain annotations about events and their temporal information for any user-provided document. Furthermore, we show EventPlus can be easily adapted to other domains (e.g., biomedical domain). We make EventPlus publicly available to facilitate event-related information extraction and downstream applications.
A critical part of reading is being able to understand the temporal relationships between events described in a passage of text, even when those relationships are not explicitly stated. However, current machine reading comprehension benchmarks have practically no questions that test temporal phenomena, so systems trained on these benchmarks have no capacity to answer questions such as “what happened before/after [some event]?” We introduce TORQUE, a new English reading comprehension benchmark built on 3.2k news snippets with 21k human-generated questions querying temporal relationships. Results show that RoBERTa-large achieves an exact-match score of 51% on the test set of TORQUE, about 30% behind human performance.
Extracting event temporal relations is a critical task for information extraction and plays an important role in natural language understanding. Prior systems leverage deep learning and pre-trained language models to improve the performance of the task. However, these systems often suffer from two shortcomings: 1) when performing maximum a posteriori (MAP) inference based on neural models, previous systems only used structured knowledge that is assumed to be absolutely correct, i.e., hard constraints; 2) biased predictions on dominant temporal relations when training with a limited amount of data. To address these issues, we propose a framework that enhances deep neural network with distributional constraints constructed by probabilistic domain knowledge. We solve the constrained inference problem via Lagrangian Relaxation and apply it to end-to-end event temporal relation extraction tasks. Experimental results show our framework is able to improve the baseline neural network models with strong statistical significance on two widely used datasets in news and clinical domains.
We propose a joint event and temporal relation extraction model with shared representation learning and structured prediction. The proposed method has two advantages over existing work. First, it improves event representation by allowing the event and relation modules to share the same contextualized embeddings and neural representation learner. Second, it avoids error propagation in the conventional pipeline systems by leveraging structured inference and learning methods to assign both the event labels and the temporal relation labels jointly. Experiments show that the proposed method can improve both event extraction and temporal relation extraction over state-of-the-art systems, with the end-to-end F1 improved by 10% and 6.8% on two benchmark datasets respectively.
We propose a novel deep structured learning framework for event temporal relation extraction. The model consists of 1) a recurrent neural network (RNN) to learn scoring functions for pair-wise relations, and 2) a structured support vector machine (SSVM) to make joint predictions. The neural network automatically learns representations that account for long-term contexts to provide robust features for the structured model, while the SSVM incorporates domain knowledge such as transitive closure of temporal relations as constraints to make better globally consistent decisions. By jointly training the two components, our model combines the benefits of both data-driven learning and knowledge exploitation. Experimental results on three high-quality event temporal relation datasets (TCR, MATRES, and TB-Dense) demonstrate that incorporated with pre-trained contextualized embeddings, the proposed model achieves significantly better performances than the state-of-the-art methods on all three datasets. We also provide thorough ablation studies to investigate our model.
Conventional word embedding models do not leverage information from document meta-data, and they do not model uncertainty. We address these concerns with a model that incorporates document covariates to estimate conditional word embedding distributions. Our model allows for (a) hypothesis tests about the meanings of terms, (b) assessments as to whether a word is near or far from another conditioned on different covariate values, and (c) assessments as to whether estimated differences are statistically significant.