Simona Frenda


2024

pdf bib
From Hate Speech to Societal Empowerment: A Pedagogical Journey Through Computational Thinking and NLP for High School Students
Alessandra Teresa Cignarella | Elisa Chierchiello | Chiara Ferrando | Simona Frenda | Soda Marem Lo | Andrea Marra
Proceedings of the Sixth Workshop on Teaching NLP

The teaching laboratory we have created integrates methodologies to address the topic of hate speech on social media among students while fostering computational thinking and AI education for societal impact. We provide a foundational understanding of hate speech and introduce computational concepts using matrices, bag of words, and practical exercises in platforms like Colaboratory. Additionally, we emphasize the application of AI, particularly in NLP, to address real-world challenges. Through retrospective evaluation, we assess the efficacy of our approach, aiming to empower students as proactive contributors to societal betterment. With this paper we present an overview of the laboratory’s structure, the primary materials used, and insights gleaned from six editions conducted to the present date.

pdf bib
Proceedings of the 3rd Workshop on Perspectivist Approaches to NLP (NLPerspectives) @ LREC-COLING 2024
Gavin Abercrombie | Valerio Basile | Davide Bernadi | Shiran Dudy | Simona Frenda | Lucy Havens | Sara Tonelli
Proceedings of the 3rd Workshop on Perspectivist Approaches to NLP (NLPerspectives) @ LREC-COLING 2024

pdf bib
MultiPICo: Multilingual Perspectivist Irony Corpus
Silvia Casola | Simona Frenda | Soda Marem Lo | Erhan Sezerer | Antonio Uva | Valerio Basile | Cristina Bosco | Alessandro Pedrani | Chiara Rubagotti | Viviana Patti | Davide Bernardi
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, several scholars have contributed to the growth of a new theoretical framework in NLP called perspectivism. This approach aimsto leverage data annotated by different individuals to model diverse perspectives that affect their opinions on subjective phenomena such as irony. In this context, we propose MultiPICo, a multilingual perspectivist corpus of ironic short conversations in different languages andlinguistic varieties extracted from Twitter and Reddit. The corpus includes sociodemographic information about its annotators. Our analysis of the annotated corpus shows how different demographic cohorts may significantly disagree on their annotation of irony and how certain cultural factors influence the perception of the phenomenon and the agreement on the annotation. Moreover, we show how disaggregated annotations and rich annotator metadata can be exploited to benchmark the ability of large language models to recognize irony, their positionality with respect to sociodemographic groups, and the efficacy of perspective-taking prompting for irony detection in multiple languages.

pdf bib
Human vs. Machine Perceptions on Immigration Stereotypes
Wolfgang S. Schmeisser-Nieto | Pol Pastells | Simona Frenda | Mariona Taule
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The increasing popularity of natural language processing has led to a race to improve machine learning models that often leaves aside the core study object, the language itself. In this study, we present classification models designed to detect stereotypes related to immigrants, along with both quantitative and qualitative analyses, shedding light on linguistic distinctions in how humans and various models perceive stereotypes. Given the subjective nature of this task, one of the models incorporates the judgments of all annotators by utilizing soft labels. Through a comparative analysis of BERT-based models using both hard and soft labels, along with predictions from GPT-4, we gain a clearer understanding of the linguistic challenges posed by texts containing stereotypes. Our dataset comprises Spanish Twitter posts collected as responses to immigrant-related hoaxes, annotated with binary values indicating the presence of stereotypes, implicitness, and the requirement for conversational context to understand the stereotype. Our findings suggest that both model prediction confidence and inter-annotator agreement are higher for explicit stereotypes, while stereotypes conveyed through irony and other figures of speech prove more challenging to detect than other implicit stereotypes.

pdf bib
QUEEREOTYPES: A Multi-Source Italian Corpus of Stereotypes towards LGBTQIA+ Community Members
Alessandra Teresa Cignarella | Manuela Sanguinetti | Simona Frenda | Andrea Marra | Cristina Bosco | Valerio Basile
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The paper describes a dataset composed of two sub-corpora from two different sources in Italian. The QUEEREOTYPES corpus includes social media texts regarding LGBTQIA+ individuals, behaviors, ideology and events. The texts were collected from Facebook and Twitter in 2018 and were annotated for the presence of stereotypes, and orthogonal dimensions (such as hate speech, aggressiveness, offensiveness, and irony in one sub-corpus, and stance in the other). The resource was developed by Natural Language Processing researchers together with activists from an Italian LGBTQIA+ not-for-profit organization. The creation of the dataset allows the NLP community to study stereotypes against marginalized groups, individuals and, ultimately, to develop proper tools and measures to reduce the online spread of such stereotypes. A test for the robustness of the language resource has been performed by means of 5-fold cross-validation experiments. Finally, text classification experiments have been carried out with a fine-tuned version of AlBERTo (a BERT-based model pre-trained on Italian tweets) and mBERT, obtaining good results on the task of stereotype detection, suggesting that stereotypes towards different targets might share common traits.

2023

pdf bib
EPIC: Multi-Perspective Annotation of a Corpus of Irony
Simona Frenda | Alessandro Pedrani | Valerio Basile | Soda Marem Lo | Alessandra Teresa Cignarella | Raffaella Panizzon | Cristina Marco | Bianca Scarlini | Viviana Patti | Cristina Bosco | Davide Bernardi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present EPIC (English Perspectivist Irony Corpus), the first annotated corpus for irony analysis based on the principles of data perspectivism. The corpus contains short conversations from social media in five regional varieties of English, and it is annotated by contributors from five countries corresponding to those varieties. We analyse the resource along the perspectives induced by the diversity of the annotators, in terms of origin, age, and gender, and the relationship between these dimensions, irony, and the topics of conversation. We validate EPIC by creating perspective-aware models that encode the perspectives of annotators grouped according to their demographic characteristics. Firstly, the performance of perspectivist models confirms that different annotators induce very different models. Secondly, in the classification of ironic and non-ironic texts, perspectivist models prove to be generally more confident than the non-perspectivist ones. Furthermore, comparing the performance on a perspective-based test set with those achieved on a gold standard test set, we can observe how perspectivist models tend to detect more precisely the positive class, showing their ability to capture the different perceptions of irony. Thanks to these models, we are moreover able to show interesting insights about the variation in the perception of irony by the different groups of annotators, such as among different generations and nationalities.

pdf bib
A Multilingual Dataset of Racial Stereotypes in Social Media Conversational Threads
Tom Bourgeade | Alessandra Teresa Cignarella | Simona Frenda | Mario Laurent | Wolfgang Schmeisser-Nieto | Farah Benamara | Cristina Bosco | Véronique Moriceau | Viviana Patti | Mariona Taulé
Findings of the Association for Computational Linguistics: EACL 2023

In this paper, we focus on the topics of misinformation and racial hoaxes from a perspective derived from both social psychology and computational linguistics. In particular, we consider the specific case of anti-immigrant feeling as a first case study for addressing racial stereotypes. We describe the first corpus-based study for multilingual racial stereotype identification in social media conversational threads. Our contributions are: (i) a multilingual corpus of racial hoaxes, (ii) a set of common guidelines for the annotation of racial stereotypes in social media texts, and a multi-layered, fine-grained scheme, psychologically grounded on the work by Fiske, including not only stereotype presence, but also contextuality, implicitness, and forms of discredit, (iii) a multilingual dataset in Italian, Spanish, and French annotated following the aforementioned guidelines, and cross-lingual comparative analyses taking into account racial hoaxes and stereotypes in online discussions. The analysis and results show the usefulness of our methodology and resources, shedding light on how racial hoaxes are spread, and enable the identification of negative stereotypes that reinforce them.

pdf bib
Confidence-based Ensembling of Perspective-aware Models
Silvia Casola | Soda Marem Lo | Valerio Basile | Simona Frenda | Alessandra Cignarella | Viviana Patti | Cristina Bosco
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Research in the field of NLP has recently focused on the variability that people show in selecting labels when performing an annotation task. Exploiting disagreements in annotations has been shown to offer advantages for accurate modelling and fair evaluation. In this paper, we propose a strongly perspectivist model for supervised classification of natural language utterances. Our approach combines the predictions of several perspective-aware models using key information of their individual confidence to capture the subjectivity encoded in the annotation of linguistic phenomena. We validate our method through experiments on two case studies, irony and hate speech detection, in in-domain and cross-domain settings. The results show that confidence-based ensembling of perspective-aware models seems beneficial for classification performance in all scenarios. In addition, we demonstrate the effectiveness of our method with automatically extracted perspectives from annotations when the annotators’ metadata are not available.

2022

pdf bib
APPReddit: a Corpus of Reddit Posts Annotated for Appraisal
Marco Antonio Stranisci | Simona Frenda | Eleonora Ceccaldi | Valerio Basile | Rossana Damiano | Viviana Patti
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Despite the large number of computational resources for emotion recognition, there is a lack of data sets relying on appraisal models. According to Appraisal theories, emotions are the outcome of a multi-dimensional evaluation of events. In this paper, we present APPReddit, the first corpus of non-experimental data annotated according to this theory. After describing its development, we compare our resource with enISEAR, a corpus of events created in an experimental setting and annotated for appraisal. Results show that the two corpora can be mapped notwithstanding different typologies of data and annotations schemes. A SVM model trained on APPReddit predicts four appraisal dimensions without significant loss. Merging both corpora in a single training set increases the prediction of 3 out of 4 dimensions. Such findings pave the way to a better performing classification model for appraisal prediction.

pdf bib
O-Dang! The Ontology of Dangerous Speech Messages
Marco Antonio Stranisci | Simona Frenda | Mirko Lai | Oscar Araque | Alessandra Teresa Cignarella | Valerio Basile | Cristina Bosco | Viviana Patti
Proceedings of the 2nd Workshop on Sentiment Analysis and Linguistic Linked Data

Inside the NLP community there is a considerable amount of language resources created, annotated and released every day with the aim of studying specific linguistic phenomena. Despite a variety of attempts in order to organize such resources has been carried on, a lack of systematic methods and of possible interoperability between resources are still present. Furthermore, when storing linguistic information, still nowadays, the most common practice is the concept of “gold standard”, which is in contrast with recent trends in NLP that aim at stressing the importance of different subjectivities and points of view when training machine learning and deep learning methods. In this paper we present O-Dang!: The Ontology of Dangerous Speech Messages, a systematic and interoperable Knowledge Graph (KG) for the collection of linguistic annotated data. O-Dang! is designed to gather and organize Italian datasets into a structured KG, according to the principles shared within the Linguistic Linked Open Data community. The ontology has also been designed to account a perspectivist approach, since it provides a model for encoding both gold standard and single-annotator labels in the KG. The paper is structured as follows. In Section 1 the motivations of our work are outlined. Section 2 describes the O-Dang! Ontology, that provides a common semantic model for the integration of datasets in the KG. The Ontology Population stage with information about corpora, users, and annotations is presented in Section 3. Finally, in Section 4 an analysis of offensiveness across corpora is provided as a first case study for the resource.