Xixin Wu


2024

pdf bib
Adaptive Query Rewriting: Aligning Rewriters through Marginal Probability of Conversational Answers
Tianhua Zhang | Kun Li | Hongyin Luo | Xixin Wu | James R. Glass | Helen M. Meng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Query rewriting is a crucial technique for passage retrieval in open-domain conversational question answering (CQA). It decontexualizes conversational queries into self-contained questions suitable for off-the-shelf retrievers. Existing methods attempt to incorporate retriever’s preference during the training of rewriting models. However, these approaches typically rely on extensive annotations such as in-domain rewrites and/or relevant passage labels, limiting the models’ generalization and adaptation capabilities. In this paper, we introduce AdaQR (Adaptive Query Rewriting), a framework for training query rewriting models with limited rewrite annotations from seed datasets and completely no passage label. Our approach begins by fine-tuning compact large language models using only 10% of rewrite annotations from the seed dataset training split. The models are then utilized to self-sample rewrite candidates for each query instance, further eliminating the expense for human labeling or larger language model prompting often adopted in curating preference data. A novel approach is then proposed to assess retriever’s preference for these candidates with the probability of answers conditioned on the conversational query by marginalizing the Top-K passages. This serves as the reward for optimizing the rewriter further using Direct Preference Optimization (DPO), a process free of rewrite and retrieval annotations. Experimental results on four open-domain CQA datasets demonstrate that AdaQR not only enhances the in-domain capabilities of the rewriter with limited annotation requirement, but also adapts effectively to out-of-domain datasets.

pdf bib
Rethinking Machine Ethics – Can LLMs Perform Moral Reasoning through the Lens of Moral Theories?
Jingyan Zhou | Minda Hu | Junan Li | Xiaoying Zhang | Xixin Wu | Irwin King | Helen Meng
Findings of the Association for Computational Linguistics: NAACL 2024

Making moral judgments is an essential step toward developing ethical AI systems. Prevalent approaches are mostly implemented in a bottom-up manner, which uses a large set of annotated data to train models based on crowd-sourced opinions about morality. These approaches have been criticized for potentially overgeneralizing a limited group of annotators’ moral stances and lacking explainability. This work proposes a flexible top-down framework to steer (Large) Language Models to perform moral reasoning with well-established moral theories from interdisciplinary research. The theory-guided top-down framework can incorporate various moral theories. Our experiments demonstrate the effectiveness of the proposed framework on datasets derived from moral theories. Furthermore, we show the alignment between different moral theories and existing morality datasets. Our analysis exhibits the potential and flaws in existing resources (models and datasets) in developing explainable moral judgment-making systems.

pdf bib
Natural Language Embedded Programs for Hybrid Language Symbolic Reasoning
Tianhua Zhang | Jiaxin Ge | Hongyin Luo | Yung-Sung Chuang | Mingye Gao | Yuan Gong | Yoon Kim | Xixin Wu | Helen Meng | James Glass
Findings of the Association for Computational Linguistics: NAACL 2024

How can we perform computations over natural language representations to solve tasks that require symbolic and numeric reasoning? We propose natural language embedded programs (NLEP) as a unifying framework for addressing math/symbolic reasoning, natural language understanding, and instruction following tasks. Our approach prompts a language model to generate full Python programs that define functions over data structures which contain natural language representations of structured knowledge. A Python interpreter then executes the generated code and prints the output. Despite using a task-general prompt, we find that this approach can improve upon strong baselines across a range of different tasks including math and symbolic reasoning, text classification, question answering, and instruction following. We found that the generated programs are interpretable since they outline the exact reasoning process followed by the program interpreter.

2023

pdf bib
ConvRGX: Recognition, Generation, and Extraction for Self-trained Conversational Question Answering
Tianhua Zhang | Liping Tang | Wei Fang | Hongyin Luo | Xixin Wu | Helen Meng | James Glass
Proceedings of the Third DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering

Collecting and constructing human-annotated corpora for training conversational question-answering (CQA) models has recently been shown to be inefficient and costly. To solve this problem, previous works have proposed training QA models with automatically generated QA data. In this work, we extend earlier studies on QA synthesis, and propose an efficient QA data generation algorithm under conversational settings. Our model recognizes potential dialogue topics, generates corresponding questions, and extracts answers from grounding passages. To improve the quality of generated QAs and downstream self-training of CQA models, we propose dropout and agreement-based QA selection methods. We conduct experiments on both data augmentation and domain adaptation settings. Experiments on the QuAC and Doc2Dial tasks show that the proposed method can significantly improve the quality of generated QA data, and also improves the accuracy of self-trained CQA models based on the constructed training corpora.

pdf bib
Search Augmented Instruction Learning
Hongyin Luo | Tianhua Zhang | Yung-Sung Chuang | Yuan Gong | Yoon Kim | Xixin Wu | Helen Meng | James Glass
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) have been significantly improved by instruction fine-tuning, but still lack transparency and the ability to utilize up-to-date knowledge and information. In this work, we propose search-augmented instruction learning (SAIL), which grounds the language generation and instruction following abilities on complex search results generated by in-house and external search engines. With an instruction tuning corpus, we collect search results for each training case from different search APIs and domains, and construct a new search-grounded training set containing (instruction, grounding information, response) triplets. We then fine-tune the LLaMA-7B model on the constructed training set. Since the collected results contain unrelated and disputing languages, the model needs to learn to ground on trustworthy search results, filter out distracting passages, and generate the target response. The search result-denoising process entails explicit trustworthy information selection and multi-hop reasoning, since the retrieved passages might be informative but not contain the instruction-following answer. Experiments show that the fine-tuned SAIL-7B model has a strong instruction-following ability, and it performs significantly better on transparency-sensitive tasks, including open-ended question answering and fact checking.

2022

pdf bib
Grounded Dialogue Generation with Cross-encoding Re-ranker, Grounding Span Prediction, and Passage Dropout
Kun Li | Tianhua Zhang | Liping Tang | Junan Li | Hongyuan Lu | Xixin Wu | Helen Meng
Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering

MultiDoc2Dial presents an important challenge on modeling dialogues grounded with multiple documents. This paper proposes a pipeline system of “retrieve, re-rank, and generate”, where each component is individually optimized. This enables the passage re-ranker and response generator to fully exploit training with ground-truth data. Furthermore, we use a deep cross-encoder trained with localized hard negative passages from the retriever. For the response generator, we use grounding span prediction as an auxiliary task to be jointly trained with the main task of response generation. We also adopt a passage dropout and regularization technique to improve response generation performance. Experimental results indicate that the system clearly surpasses the competitive baseline and our team CPII-NLP ranked 1st among the public submissions on ALL four leaderboards based on the sum of F1, SacreBLEU, METEOR and RougeL scores.

2019

pdf bib
Coupling Global and Local Context for Unsupervised Aspect Extraction
Ming Liao | Jing Li | Haisong Zhang | Lingzhi Wang | Xixin Wu | Kam-Fai Wong
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Aspect words, indicating opinion targets, are essential in expressing and understanding human opinions. To identify aspects, most previous efforts focus on using sequence tagging models trained on human-annotated data. This work studies unsupervised aspect extraction and explores how words appear in global context (on sentence level) and local context (conveyed by neighboring words). We propose a novel neural model, capable of coupling global and local representation to discover aspect words. Experimental results on two benchmarks, laptop and restaurant reviews, show that our model significantly outperforms the state-of-the-art models from previous studies evaluated with varying metrics. Analysis on model output show our ability to learn meaningful and coherent aspect representations. We further investigate how words distribute in global and local context, and find that aspect and non-aspect words do exhibit different context, interpreting our superiority in unsupervised aspect extraction.