Yifei Liu


2024

pdf bib
VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models
Yifei Liu | Jicheng Wen | Yang Wang | Shengyu Ye | Li Lyna Zhang | Ting Cao | Cheng Li | Mao Yang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Scaling model size significantly challenges the deployment and inference of Large Language Models (LLMs). Due to the redundancy in LLM weights, recent research has focused on pushing weight-only quantization to extremely low-bit (even down to 2 bits). It reduces memory requirements, optimizes storage costs, and decreases memory bandwidth needs during inference. However, due to numerical representation limitations, traditional scalar-based weight quantization struggles to achieve such extreme low-bit.Recent research on Vector Quantization (VQ) for LLMs has demonstrated the potential for extremely low-bit model quantization by compressing vectors into indices using lookup tables. In this paper, we introduce **Vector Post-Training Quantization (VPTQ)** for extremely low-bit quantization of LLMs. We use Second-Order Optimization to formulate the LLM VQ problem and guide our quantization algorithm design by solving the optimization.We further refine the weights using Channel-Independent Second-Order Optimization for a granular VQ.In addition, by decomposing the optimization problem, we propose a brief and effective codebook initialization algorithm. We also extend VPTQ to support residual and outlier quantization, which enhances model accuracy and further compresses the model.Our experimental results show that VPTQ reduces model quantization perplexity by 0.01-0.34 on LLaMA-2, 0.38-0.68 on Mistral-7B, 4.41-7.34 on LLaMA-3 over SOTA at 2-bit, with an average accuracy improvement of 0.79-1.5% on LLaMA-2, 1% on Mistral-7B, 11-22% on LLaMA-3 on QA tasks on average. We only utilize 10.4-18.6% of the quantization algorithm execution time, resulting in a 1.6-1.8× increase in inference throughput compared to SOTA.

pdf bib
Unleashing the Power of LLMs in Court View Generation by Stimulating Internal Knowledge and Incorporating External Knowledge
Yifei Liu | Yiquan Wu | Ang Li | Yating Zhang | Changlong Sun | Weiming Lu | Fei Wu | Kun Kuang
Findings of the Association for Computational Linguistics: NAACL 2024

Court View Generation (CVG) plays a vital role in the realm of legal artificial intelligence, which aims to support judges in crafting legal judgment documents. The court view consists of three essential judgment parts: the charge-related, law article-related, and prison term-related parts, each requiring specialized legal knowledge, rendering CVG a challenging task.Although Large Language Models (LLMs) have made remarkable strides in language generation, they encounter difficulties in the knowledge-intensive legal domain.Actually, there can be two types of knowledge: internal knowledge stored within LLMs’ parameters and external knowledge sourced from legal documents outside the models.In this paper, we decompose court views into different parts, stimulate internal knowledge, and incorporate external information to unleash the power of LLMs in the CVG task.To validate our method, we conduct a series of experiment results on two real-world datasets LAIC2021 and CJO2022. The experiments demonstrate that our method is capable of generating more accurate and reliable court views.

pdf bib
Latent Learningscape Guided In-context Learning
Anlai Zhou | Sunshine Jiang | Yifei Liu | Yiquan Wu | Kun Kuang | Jun Xiao
Findings of the Association for Computational Linguistics: ACL 2024

The growing interest in leveraging large language models is driven by their exceptional imitation and reasoning capabilities. In-context learning (ICL), a streamlined method, has shown potential in boosting these models’ performance without modifying their underlying parameters, especially when supplied with suitable demonstrations. However, existing methods mainly choose demonstrations by comparing surface-level semantic similarities (e.g., based on embedding) and fall short of identifying the most fitting ones. This paper introduces the concept of a “latent learningscape”, a more nuanced representation that describes the characteristic of the demonstrations. Building on this concept, we develop a results-driven approach to characterize the latent learningscape features of demonstrations, which then inform the creation of more effective prompts. Through comprehensive testing across datasets in arithmetic, commonsense, and symbolic reasoning tasks, our approach outperforms leading models, showing an average increase in scores by 7.4 percentage points.

pdf bib
Chain-of-Quizzes: Pedagogy-inspired Example Selection in In-Context-Learning
Yiquan Wu | Anlai Zhou | Yuhang Liu | Yifei Liu | Adam Jatowt | Weiming Lu | Jun Xiao | Kun Kuang
Findings of the Association for Computational Linguistics: ACL 2024

In-context learning (ICL) has emerged as a powerful tool for enhancing large language models (LLMs) in addressing downstream tasks. In this paper, we explore the vital task of example selection in ICL by mimicking the human learning process. We propose a Chain-of-Quizzes (CoQ) framework inspired by educational theories such as Bruner’s Spiral Learning and Mastery Learning theory. Specifically, our framework employs the LLMs to answer the quiz (question in the example) to sift ‘good’ examples, combines these examples iteratively with the increasing complexity, and utilizes a final exam to gauge the combined example chains. Our extensive experiments on diverse reasoning datasets show the proposed approach outperforms baseline models. These findings underscore the framework’s potential for future research.

pdf bib
Enhancing Court View Generation with Knowledge Injection and Guidance
Ang Li | Yiquan Wu | Yifei Liu | Kun Kuang | Fei Wu | Ming Cai
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Court View Generation (CVG) is a challenging task in the field of Legal Artificial Intelligence (LegalAI), which aims to generate court views based on the plaintiff claims and the fact descriptions. While Pretrained Language Models (PLMs) have showcased their prowess in natural language generation, their application to the complex, knowledge-intensive domain of CVG often reveals inherent limitations. In this paper, we present a novel approach, named Knowledge Injection and Guidance (KIG), designed to bolster CVG using PLMs. To efficiently incorporate domain knowledge during the training stage, we introduce a knowledge-injected prompt encoder for prompt tuning, thereby reducing computational overhead. Moreover, to further enhance the model’s ability to utilize domain knowledge, we employ a generating navigator, which dynamically guides the text generation process in the inference stage without altering the model’s architecture, making it readily transferable. Comprehensive experiments on real-world data demonstrate the effectiveness of our approach compared to several established baselines, especially in the responsivity of claims, where it outperforms the best baseline by 11.87%.

2023

pdf bib
Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model Collaboration
Yiquan Wu | Siying Zhou | Yifei Liu | Weiming Lu | Xiaozhong Liu | Yating Zhang | Changlong Sun | Fei Wu | Kun Kuang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI, i.e., predicting the judgment of the case in terms of case fact description. Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems. Thus, it is worthwhile to explore the utilization of precedents in the LJP. Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task. These can be broken down into two categories: large language models (LLMs) and domain-specific models. LLMs are capable of interpreting and generating complex natural language, while domain models are efficient in learning task-specific information. In this paper, we propose the precedent-enhanced LJP framework (PLJP) – a system that leverages the strength of both LLM and domain models in the context of precedents. Specifically, the domain models are designed to provide candidate labels and find the proper precedents efficiently, and the large models will make the final prediction with an in-context precedents comprehension. Experiments on the real-world dataset demonstrate the effectiveness of our PLJP. Moreover, our work shows a promising direction for LLM and domain-model collaboration that can be generalized to other vertical domains.

2022

pdf bib
Towards Interactivity and Interpretability: A Rationale-based Legal Judgment Prediction Framework
Yiquan Wu | Yifei Liu | Weiming Lu | Yating Zhang | Jun Feng | Changlong Sun | Fei Wu | Kun Kuang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Legal judgment prediction (LJP) is a fundamental task in legal AI, which aims to assist the judge to hear the case and determine the judgment. The legal judgment usually consists of the law article, charge, and term of penalty. In the real trial scenario, the judge usually makes the decision step-by-step: first concludes the rationale according to the case’s facts and then determines the judgment. Recently, many models have been proposed and made tremendous progress in LJP, but most of them adopt an end-to-end manner that cannot be manually intervened by the judge for practical use. Moreover, existing models lack interpretability due to the neglect of rationale in the prediction process. Following the judge’s real trial logic, in this paper, we propose a novel Rationale-based Legal Judgment Prediction (RLJP) framework. In the RLJP framework, the LJP process is split into two steps. In the first phase, the model generates the rationales according to the fact description. Then it predicts the judgment based on the fact and the generated rationales. Extensive experiments on a real-world dataset show RLJP achieves the best results compared to the state-of-the-art models. Meanwhile, the proposed framework provides good interactivity and interpretability which enables practical use.